Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Optimal trajectories for systems of canonical form

Published: 05.03.2014

Authors: Nefedov G.A.

Published in issue: #1(25)/2014

DOI: 10.18698/2308-6033-2014-1-1186

Category: Engineering Sciences | Chapter: Theoretical Mechanics. Design of mechanisms and machines

The paper presents the type of program trajectories in the class of polynomials, on which the minimum value of the special energy functional is implemented. It is done for nonlinear systems with vector control. There has been created the program control corresponding to this type. When solving terminal tasks, use of polynomials is a typical technique for constructing trajectories for the systems of canonical or quasi-canonical form in the solution of the terminal problems. The presented results allow the author to determine the theoretical basis for the choice of polynomials as basic functions.


References
[1] Kanatnikov A.N., Shmagina E.A. Nelineinaya dinamika i upravlenie: Sbornik statei - Nonlinear Dynamics and Control: Collected papers. Issue 7. Emel'ianov S.V., Korovin S.K., eds. Moscow, FIZMATLIT Publ., 2010, pp. 79-94.
[2] Krasnoshchechenko V.I., Krishchenko A.P. Nelineinye sistemy: geometricheskie metody analiza i sinteza [Nonlinear systems: geometric methods for analysis and synthesis]. Moscow, Bauman MSTU Publ., 2005, 520 p.
[3] Tkachev S.B., Shevlyakov A.A. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki - Herald of Bauman Moscow State Technical University, series “Natural Sciences” , 2013, no. 1, pp. 3-16.
[4] Tkachev S.B. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki - Herald of Bauman Moscow State Technical University, series “Natural Sciences”, 2008, no. 2, pp. 33-55.
[5] Tkachev S.B. Nauka i obrazovanie - Science and education. E-journal, 2012, no. 8, pp. 121-134.
[6] Isidori A. Nonlinear control systems. London, Springer-Verlag, 1995, 587 p.
[7] Werling M., Kammel S., Ziegler J., Groll L. Optimal trajectories for time-critical street scenarios using discretized terminal manifold. I. J. Robotic Res., 2012, pp. 346-359.