Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Methods to compute electrical strength and output electric characteristics of the rectifying diodes and compare their electric parameters

Published: 03.06.2024

Authors: Onufrieva E.V.

Published in issue: #6(150)/2024

DOI: 10.18698/2308-6033-2024-6-2366

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The main problem in design and development of the rectifying diodes used in the spacecraft power propulsion systems lies in determination of their operating voltage (or the reverse arc breakdown voltage in the locked state), which together with the conducting state current density identifies the electric power characteristics. The paper proposes a method for computing electric strength characteristics in the rectifying diodes. The method combines several mathematical models to compute distribution of the electric field strength, potential and temperature of the cesium atoms in a cathode ion layer in the reverse current mode, study the system resonant properties (obtaining amplitude-frequency and phase-frequency characteristics), as well as studying the electrical strength characteristics of the rectifying diode (determining the diode reverse breakdown voltage). Based on combined introduction of the numerical, semi-empirical and analytical approaches, the diode output characteristics could be computed and justified; they include the breakdown and operating voltages. These characteristics are used as the basis in comparing the diode output electrical power characteristics and justifying a possibility of using the rectifying diodes in a particular current conversion system.

EDN TQLFWX


References
[1] Grishin S.D., Leskov L.V., Kozlov N.P. Elektricheskie raketnye dvigateli [Electric rocket engines]. Moscow, Mashinostroenie Publ., 1975, 272 p.
[2] Favorsky O.N., Fishgoyt V.V., Yantovsky E.I. Osnovy teorii kosmicheskikh elektroraketnykh dvigatelnykh ustanovok [Fundamentals of the theory of space electric rocket propulsion systems]. Moscow, Vysshaya Shkola Publ., 1970.
[3] Kvasnikov L.A., Latyshev L.A., Ponomarev-Stepnoy N.N., Sevruk D.D., Tikhonov V.B. Teoriya i raschet energosilivykh ustanovok kosmicheskikh letatelnykh apparatov [Theory and calculation of the spacecraft power systems]. 2nd edition, revised and enlarged. Moscow, MAI Publ., 2001, 480 p.
[4] Onufrieva E.V., Onufriev V.V., Ivashkin A.B. Fizicheskie osnovy postroeniya i proektirovaniya vysokotemperaturnykh sistem preobrazovaniya toka kosmicheskikh energodvigatelnykh ustanovok [Physical foundations of construction and design of high-temperature current conversion systems for the space power propulsion systems]. Moscow, BMSTU Publ., 2021, 167 p.
[5] Onufrieva E.V., Onufriev V.V. Grishin Yu.M., Sidnyaev N.I., Sinyavsky V.V., Ivashkin A.B. O raschete napryazheniya zazhiganiya obratnogo dugovogo razryada v vysokovoltnom plazmennom termoemissionnom diode [On calculating discharge characteristics in a high-voltage plasma thermionic diode in reverse current mode]. Izvestiya Rossiyskoy akademii nauk. Energetika — Thermal Engineering, 2018, no. 4, pp. 108–115.
[6] Onufrieva E.V., Onufriev V.V. K voprosy o raschete napryazheniya obratnogo dugovogo proboya vysokovoltnogo termoemissionnogo dioda i ego predelnoy udelnoy elektricheskoy moshchnosti [On the issue of calculating the reverse arc breakdown voltage of a high-voltage thermionic diode and its maximum specific electrical power]. Izvestiya Rossiyskoy akademii nauk. Energetika — Thermal Engineering, 2023, no. 2, pp. 46–57.
[7] Onufriev V.V. Vliyanie energeticheskogo balansa atomov v katodnom sloe na podzhig dugovogo razryada v gazonapolnennom diode [Influence of the atoms’ energy balance in the cathode layer on ignition of an arc discharge in the gas-filled diode]. In: Sbornik trudov 2-y Otraslevoy konferentsii “Yadernaya energetika v kosmose. Fizika termoemissionnykh preobrazovateley energii” (Sukhumi, 28 oktyabrya – 2 noyabrya 1991 g. [Collection of proceedings of the 2nd industry conference “Nuclear power in space. Physics of thermionic energy converters” (Sukhumi, October 28 — November 2, 1991)]. Sukhumi, 1991, pp. 278–287.
[8] Antsiferov D.A., Onufriev V.V., Onufrieva E.V. Issledovanie elektricheskoy moshchnosti vysokovoltnogo plazmennogo termoemissionnogo dioda ot teplofizicheskikh parametrov i tipa rabochego tela [Investigation of the high-voltage plasma thermionic diode electric power dependence on the thermophysical parameters and the type of working fluid]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2022, iss. 9. https://doi.org/10.18698/2308-6033-2022-9-2210
[9] Kaplan V.B., Martsinovsky A.M., Mustafaev A.S. et al. Impulsnoe upravlenie tokom silnotochnogo nizkovoltnogo razryada na smesi parov tseziya i bariya [Pulse current control of a high-current low-voltage discharge on the cesium and barium vapors mixture]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 1977, vol. 47, no. 10, pp. 2068–2078.
[10] Baksht F.G., Kaplan V.B., Kostin A.A. et al. Issledovanie statsionarnogo provodyashchego sostoyaniya setochnogo klyuchevogo elementa [Study of the stationary conducting state of the grid key element]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 1978, vol. 48, no. 11, pp. 2273–2293.
[11] Kaplan V.B., Makarov A.N., Martsinovsky A.M., Novikov A.B. et al. Nizkovoltnyi vysokotemperaturnyi klyuchevoy element novogo tipa dlya preobrazovaniya postoyannogo toka v peremennyi [Low-voltage high-temperature key element of the new type for converting direct current into the alternating current]. Zhurnal teoreticheskoy fiziki — Technical Physics, 1977, vol. 47, no. 2, pp. 274–297.
[12] Babanin V.I., Kaplan V.B., Kolyshkin V.N. et al. Silynotochnyi klyuchevoy element s Cs-Ba napolneniem v nestatsionarnom rezhime razryada [High-current key element with the Cs–Ba filling in the non-stationary discharge mode]. In: Vsesoyuz. konf. po termoemissionnomu metodu preobrazovaniya teplovoy energii v elektricheskuyu: Tezisy dokladov [All-union conf. on the thermoemmision method of converting thermal energy into the electrical energy: Abstracts of the reports]. Obninsk, 1979, p. 91.
[13] Bogomolov I.V., Kuzin G.A., Yurchenko A.A. Eksperimentalnoe issledovanie vysokotemperaturnykh ventiley na bolshie plotnosti toka [Experimental study of the high-temperature valves influence on the high current densities]. In: Vsesoyuz. konf. po termoemissionnomu metodu preobrazovaniya teplovoy energii v elektricheskuyu [All-union conf. on the thermoemmision method of converting thermal energy into the electrical energy]. Obninsk, 1979, p. 96.
[14] Baksht F.G., Moyzhes B.Ya. K teorii nizkovoltnoy dugi v tsezii [On the theory of a low-voltage arc in cesium]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 1965, vol. 35, no. 2, pp. 266–278.
[15] Dyakonov V.P. “MATLAB 6.5 SP1/7 + Simulink 5/6” v matematike i modelirovanii [“MATLAB 6.5 SP1/7 + Simulink 5/6” in mathematics and modeling]. Moscow, SOLON-Press Publ., 2005, 576 p.
[16] Onufrieva E.V., Onufriev V.V., Ivashkin A.B., Sinyavsky V.V. Modelirovanie rezonansnykh svoystv i raboty tsepi termoemissionnyi reactor-preobrazovatel – termoemissionnyi ventil – induktivnaya nagruzka kosmicheskoy energodvigatelnoy ustanovki [Modeling of resonant properties and operation of the thermionic reactor-converter circuit – thermionic valve – inductive load of the space power propulsion system]. Izvestiya Rossiyskoy akademii nauk. Energetika — Thermal Engineering, 2013, no. 1, pp. 68–78.
[17] Hayashi Ch. Nonlinear oscillations in physical systems. Princeton University Press, 1986 [In Russ.: Khayasi T. Nelineynye kolebaniya v fizicheskikh sistemakh. Moscow, Mir Publ., 1968, 432 p.].
[18] Lekorghier J. Upravlyaemye elektricheskie ventili i ikh primenenie [Controlled electric valves and their application]. Moscow, Energiya Publ., 1971, 503 p. [in Russ.].
[19] Sitnik N.Kh. Silovye kremnivye ventilnye bloki [Power silicon valve blocks]. Moscow, Energiya Publ., 1972, 223 p.
[20] Lidow A., Strydom J., M. de Rooij, Reusch D. GaN Transistors for Efficient Power Conversion. Second Edition. Efficient Power Conversion Corporation, El Segundo (California, USA), 2015, p. 268.
[21] Colino S., Beach R. Fundamentals of Gallium Nitride Power Transistors, Application Note: AN002. Efficient Power Conversion Corporation, 2019, p. 4.
[22] Vishnevsky A.I., Rudenko V.S., Platonov A.P. Silovye ionnye i poluprovodnikovye pribory [Power ion and semiconductor devices]. Moscow, Vysshaya Shkola Publ., 1975, 343 p.
[23] Kaganov I.L. Ionnye pribory [Ionic devices]. Moscow, Energiya Publ., 1972, 528 p.
[24] Onufriev V.V., Grishin S.D. Eksperimentalnoe issledovanie elektricheskoy prochnosti k obratnomu dugovomu proboyu termoemissionnogo dioda s tsezievym napolneniem [Experimental investigation of electric strength to inverse arc breakdown of a thermionic diode with cesium filling]. Teplofizika vysokikh temperatur — High Temperature, 1996, vol. 34, no. 3, pp. 482–485.
[25] Onufriev V.V., Loshkarev A.I. Zazhiganie obratnogo dugovogo razryada v barievom termoemissionnom diode [Initiation of arcback discharge in barium thermal emission diode]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Estestvennye nauki — Herald of the Bauman Moscow State Technical University, Natural Sciences Series, 2005, no. 1, pp. 72–77.