Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Computational analysis of the absorption and scattering of electromagnetic waves by a single particle of the condensed phase of combustion products of energetic condensed material

Published: 23.05.2023

Authors: Shostov A.K., Fedotova K.V., Kozichev V.V.

Published in issue: #5(137)/2023

DOI: 10.18698/2308-6033-2023-5-2275

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

At present, an important task is to determine the burning rate of energy condensed systems (ECS) with metal additives under non-stationary conditions. At the same time, a promising way to experimentally determine the law of the burning rate is the radio wave microwave method. However, the presence of a significant amount of condensed phase in the combustion products of metallized ECS complicates the tuning of the interference microwave diagnostic method. The article considers the interaction of an incident monochromatic electromagnetic wave with a single particle of the condensed phase in a closed volume without taking into account the influence of the result of the interaction of other particles with the incident wave. A mathematical model has been developed and scattering indicatrices have been obtained for various particle diameters in the range from 10 to 20 micrometers, generated radiation frequencies in the range of 9–15 GHz, and permittivities of condensed-phase particles in the range of 1.6–10. An analysis of the results of a numerical study demonstrates that an increase in the particle size leads to a sharp increase in the intensity of the scattered wave. Changing the frequency of the wave generated by the microwave generator is a priority method for amplifying the intensity of the scattered wave, which makes it possible to detect particles with smaller diameters up to several micrometers.


References
[1] Gusachenko L.K., Zarko V.E. Analiz nestacionarnyh modelej goreniya tverdyh topliv (obzor) [Analysis of unsteady solid-propellant combustion models (review)]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2008, no. 1, pp. 35–48.
[2] Lavrov B.P., Sharay YU.M., Sergeev A.V., Gavrilenko I.V. Opredelenie skorosti goreniya tverdogo topliva s primeneniem izmeritelya polnyh soprotivlenij SVCH-diapazona [Determination of the burning rate of solid fuel using a microwave impedance meter]. Vestnik MGTU im. N.E. Baumana, Seriya Priborostroenie — Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2009, no. 1, pp. 28–36.
[3] Yagodnikov D.A., Suhov A.V., Sergeev A.V., Kozichev V.V. Eksperimental’naya metodika i model’naya ustanovka dlya issledovaniya goreniya energeticheskih kondensirovannyh sistem pri vysokih davleniyah [Experimental technique and model setup for studying the combustion of energy condensed systems at high pressures]. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroenie. Spec. vypusk «Energeticheskoe i transportnoe mashinostroenie» — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. Spec. Edition “Energy and transport mechanical engineering”, 2011, pp. 63–73.
[4] Perov V.V., Zarko V.E., Zhukov A.S. Novyi mikrovolnovyi metod izmereniya nestatsionarnoy massovoi skorosti gazifikatsii kondensirovannykh sistem [New microwave method for measuring unsteady mass gasification rate of condensed systems]. Fzika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2014, vol. 50, no. 6, pp. 130–133.
[5] Zarko V., Perov V., Kiskin A., Nalivaichenko D. Microwave resonator method for measuring transient mass gasification rate of condensed systems. Acta Astronautica J., 2019, vol. 158, pp. 272–276.
[6] Podshivalov A.I., Grishin Yu.A., Kiskin A.B., Zarko V.E. Usovershenstvovannyi SVCH-metod izmereniya dinamicheskikh parametrov protsessa gazifikatsii kondensirovannykh veschestv [Improved microwave method for measuring the dynamic parameters of gasification of condensed substances]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2000, vol. 58, no. 5, pp. 87–95.
[7] Yagodnikov D.A., Sergeev A.V., Kozichev V.V. Eksperimental’no-teoreticheskoe obosnovanie povysheniya tochnosti izmereniya skorosti goreniya energeticheskikh kondensirovannykh sistem SVCH-metodom [Experimental and theoretical basis for improving the accuracy of measuring the burning rate of energetic condensed systems by a microwave method]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2014, no. 2, pp. 51–61.
[8] Balandin O.A., Verkhoturov A.R. Teoreticheskie aspekty vzaimodeystviya tverdykh chastits s elektromagnitnymi volnami [Theoretical aspects solid particles and electromagnetic waves interaction]. Vestnik CHitGU — Herald of the Chita State University, 2011, no. 12 (79), pp. 71–77.
[9] Balandin O.A., Verkhoturov A.R. Vliyanie intensivnosti elektromagnitnykh voln na dvizhenie tverdoy chastitsy [The intensity influence of electro-magnetic waves on the solid particles motion]. Vestnik ZabGU — Herald of Zabaikalye State University, 2013, no. 11 (102), pp. 17–21.
[10] Murphy J.J., Krier H. Evaluation of ultrasound technique for solid-propellant burning rate response measurments. Propul. Power. J., 2002, vol. 18, no. 3, pp. 641–651. DOI: 10.2514/2.5978
[11] Strand L.D., Magiawala K.R., McNamara R.P. Microwave measurement of the solid-propellant pressure-coupled response function. Spacecraft rockets J., 1980, vol. 17, no. 6, pp. 483–488, DOI: 10.2514/3.57768
[12] Eisenreich N., Kugler H.P., Sinn F. An optical system for measuring the burning rate of solid propellant stranda. Propell. Explos. Pyrotech., 1987, vol. 12, pp. 78–80.
[13] Damarackiy I.A., Trunov P.A. Modelirovanie na osnove volnovoy optiki protsessov pogloscheniya i rasseyanie elektromagnitnykh voln SVCH diapazona v dispersnykh sistemakh [Modeling on the basis of wave optics of the processes of absorption and scattering of electromagnetic waves in the microwave range in dispersed systems]. Nauka i obrazovanie. MGTU im. N.E. Baumana. Elektron. zhurn. — Science and education, BMSTU, Electr. J., 2013, no. 9, pp. 445–454.
[14] Guzatov D.V., Gaida L.S., Afanasiev A.A. Teoreticheskoe issledovanie sily svetovogo davleniya, deistvuyushchey na sfericheskuyu dielektricheskuyu chastitsu proizvol’nogo razmera v interferentsionnom pole dvukh ploskikh monokhromaticheskikh elektromagnitnykh voln [Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves]. Kvantovaya elektronika — Quantum Electronics, 2008, vol. 38, no. 12, pp. 1155–1162.
[15] Balandin O.A., Verkhoturov A.R. Vliyanie parametrov elektromagnitnykh voln na dvizhenie tverdoi mineral’noi chasticy [Influence of parameters of electromagnetic waves on the movement of a solid mineral particles]. Kulaginskie chteniya: tekhnika i tekhnologii proizvodstvennyh processov. XV mezhdunarodnaya nauchno-prakticheskaya konferenciya — Kulagin readings: technique and technology of production processes. XV international scientific and practical conference, 2015, vol. 3, pp. 88–93.
[16] Balandin O.A., Verkhoturov A.R. Dinamicheskaya model’ vzaimodeistviya ploskopolyarizovannykh elektromagnitnykh voln s chastitsei dielektrika [Dynamic model of interaction of plane polarized electromagnetic waves with dielectric particles]. Kulaginskie chteniya: tekhnika i tekhnologii proizvodstvennyh processov. XV mezhdunarodnaya nauchno-prakticheskaya konferenciya — Kulagin readings: technique and technology of production processes. XVIII international scientific and practical conference, 2018, vol. 2, pp. 158–160.
[17] Yagodnikov D.A. Gorenie poroshkoobraznykh metallov v gazodispersnykh sredakh [Combustion of powdered metals in gas-dispersed media]. 2nd ed., rev. and enl. Moscow, BMSTU Publ., 2018.
[18] Landau L.D., Lifshic E.M. Elektrodinamika sploshnykh sred [Electrodynamics of continuous media], Moscow, Fizmatlit Publ., 1992.