Development of a method for temperature calculation of the multi-fuel nozzle inner wall based on heat flux
Authors: Altunin K.V.
Published in issue: #12(132)/2022
DOI: 10.18698/2308-6033-2022-12-2238
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The article presents results of development of a new method for temperature calculation of the multi-fuel nozzle inner wall based on data on heat flux. A patent search and an analysis of scientific and technical information on the multi-fuel nozzles were carried out. It was established that one of the most effective ways to prevent appearance and rapid formation of carbonaceous deposits in liquid hydrocarbon fuels was to reduce temperature of the metal wall. New formulae were obtained to calculate the inner surface temperature depending on the amount of heat-transfer agents and their thermophysical properties, geometric characteristics of the supply channels and the injector “dry” mass. A comparative theoretical calculation of the temperature decrease inside a single-fuel and a dual-fuel nozzles was carried out at different mass flow rates of kerosene. The results obtained indicate higher cooling efficiency of multi-fuel nozzles compared to the single-fuel ones.
References
[1] Bol’shakov G.F. Fiziko-khimicheskie osnovy obrazovaniya osadkov v reaktivnykh toplivakh [Physico-chemical basis for deposits’ formation in the jet fuels]. Leningrad, Khimiya Publ., 1972, 232 p.
[2] Altunin V.A. Issledovanie osobennostey teplootdachi k uglevodorodnym goryuchim i okhladitelyam v energeticheskikh ustanovkakh mnogorazovogo ispolzovaniya [Study of the features of heat transfer to hydrocarbon fuels and coolants in reusable power plants]. Book one. Kazan, KFU Publ., 2005, 272 p.
[3] Yanovskij L.S, Ivanov V.F., Galimov F.M., Sapgir G.B. Koksootlozheniya v aviatsionnykh i raketnykh dvigatelyakh [Coke deposits in aviation and rocket engines]. Kazan, Abak Publ., 1999, 284 p.
[4] Altunin K.V. Puti usovershenstvovaniya zhidkostnykh forsunok VRD [Ways to improve the ABE liquid injectors]. In: Materialy Mezhdunar. molodezhnoy nauchn. konf., posvyasch. 120-letiyu so dnya rozhdeniya aviakonstruktora, akad. A.N. Tupoleva «Tupolevskie chteniya» [Materials of the Int. youth scientific conf. devoted to the 120th anniversary of Academician A.N. Tupolev birthday “Tupolev Readings”]. Kazan, Tupolev Kazan State Technical University Publ., 2008, vol. 1, pp. 234–235.
[5] Altunin K.V. Razrabotka novoy metodiki rascheta tolschiny sloya uglerodsoderzhaschikh osadkov v toplivnykh kanalakh teplovykh dvigateley i energoustanovok [Elaboration of a new calculation procedure of hydrocarbon deposit layer thickness in fuel channels of heat engines and power plants]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2021, iss. 10 (118). https://doi.org/10.18698/2308-6033-2021-10-2119
[6] Ramier S. A., Barve V.V., Thackway R.L., et.al. Multi-functional fuel nozzle with a heat shield. WO Patent 2016/024975. F23R 3/28, F23R 3/36, F23D 11/38. 18.02.2006.
[7] Altunin K.V. Forsunka [Nozzle]. Patent RF on invention no. 2388966. IPC F23D 11/36, F23K 5/18. Bull. no. 13. Publ. May 10, 2010.
[8] Altunin K.V. Forsunka [Nozzle]. Patent RF on invention no. 2447362. IPC F23D11/36, F23K5/18. Bull. no. 10. Publ. April 10, 2012.
[9] Altunin V.A., Altunin K.V., Abdullin M.R., L’vov M.L., Schigolev A.A., Platonov E.N., Yusupov A.A., Aliev I.N., Yanovskij L.S., Yanovskaya M.L. Nekotorye puti sovershenstvovaniya dvigateley i energoustanovok marki «NK». Chast’ 1 [Certain ways to improve engines and power plants of the “NK” mark]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2021, vol. 13, no. 12, pp. 530–542.
[10] Altunin V.A., Altunin K.V., Abdullin M.R., L’vov M.L., Shchigolev A.A., Platonov E.N., Yusupov A.A., Aliev I.N., Yanovskij L.S., Yanovskaya M.L. Nekotorye puti sovershenstvovaniya dvigateley i energoustanovok marki «NK». Chast’ II. [Certain ways to improve engines and power plants of the “NK” mark]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2022, vol. 14, no. 1, pp. 9–21.
[11] Altunin V.A., Altunin K.V., Aliev I.N., Gortyshov Yu.F., Davlatov N.B., Zaripova M.A., Kernozhickiy V.A., Kolychev A.V., Raznoschikov V.V., Safarov M.M., Yanovskij L.S., Yanovskaya M.L. Nekotorye puti povysheniya effektivnosti zhidkostnykh reaktivnykh dvigateley letatelnykh apparatov na uglevodorodnykh i azotosoderzhashchikh goryuchikh i okhladitelyakh [Certain ways to improve efficiency of the aircraft jet engines on hydrocarbon and nitrogenized fuels and coolants]. Monography. L.S. Yanovskij, ed. Kazan, Shkola Publ., 2020, 148 p.
[12] Malygina M.V. Chislennoe issledovanie mnogotoplivnogo gorelochnogo modulya kamery sgoraniya GTU. [Numerical investigation multifuel combustion gas turbine combustion chamber module]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2011, no. 3 (27), pp. 143–150.
[13] Murashev P.M. Mnogotoplivnaya forsunka dlya gazoturbinnykh dvigateley i ustanovok [Multifuel nozzle for gas turbine engines and plants]. Patent RF on PM no. 110818. IPC F23D11/10. Bull. no. 33. Publ. November 27, 2011.
[14] Burdykin V.D., Kozlov V.G., Kondrashova E.V. Mnogotoplivnaya forsunka [Multifuel nozzle]. Patent RF on PM no.166189. IPC F23D11/10, F23D11/36. Publ. November 20, 2016.
[15] Mal’chuk V.I., Shatrov M.G., Kudryashov B.A., Skorodelov S.D. Forsunka dlya podachi dvukh vidov topliva v dizelnyi dvigatel [Nozzle for fuel supply of two fuels in a diesel engine]. Patent RF on IZ no. 2541674. IPC F02M 43/04, F02D 19/06, F02M 21/00. Bull. no. 5. Publ. February 20, 2015.
[16] Stasyuk A.V., Kalashnik N.N., Priladyshev D.YU., Pustarnakov A.I. Forsunka dvukhtoplivnaya “gaz plyus zhidkoe toplivo” [Two-fuel nozzle “gas plus liquid fuel”]. Patent RU on IZ no. 2578785. IPC F23D 17/00, F23R 3/36. Publ. March 27, 2016. Bull. no. 9.
[17] Altunin K.V. Razrabotka metodiki rascheta temperatury vnutrenney stenki multitoplivnoy forsunki s celiyu predotvrascheniya osadkoobrazovaniya i peregreva. [Development of a technique for calculating the temperature of the multi-fuel nozzle inner wall in order to prevent deposit formation and overheating]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyenie — BMSTU Journal of Mechanical Engineering, 2021, no. 6 (735), pp. 37–47.
[18] Cengel Yunus A. Heat Transfer: A Practical Approach. Second edition. Mcgraw-Hill Publ., 2002, 896 p.
[19] Altunin K.V. Razrabotka metodiki rascheta teplootdachi pri vliyanii osadkoobrazovaniya i elektricheskoy konvektsii v srede kerosina [Development of calculation methods of heat transfer under influence of deposit formation and electric convection in a medium of kerosine]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2022, vol. 14, no. 7, pp. 325–334.