Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Application of microhybrid heterogeneous condensed systems to increase the rocket engines power

Published: 17.11.2022

Authors: Bechasnov P.M.

Published in issue: #11(131)/2022

DOI: 10.18698/2308-6033-2022-11-2230

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper considers heterogeneous condensed systems which potentially make it possible to use highly efficient oxidizers in their composition, including those liquid. The existing technologies are unable to include them in composition of the solid rocket propellants. Placing oxidizers such as nitrogen dioxide and tetranitromethane in hermetically sealed combustible polymer capsules connected by physical or chemical means allows creating a microhybrid rocket engine. Studies based on analyzing characteristics of similar systems and thermodynamic calculations demonstrate that such systems are potentially able to ensure mechanical strength required for the rocket engine functioning, sufficient speed, combustion static stability and chemical compatibility of components, as well as power at the level of liquid high-boiling fuel vapors, while maintaining advantages of the solid fuel engines. Considering their initial higher safety in production and operation, as well as the ability to be produced by modern technologies, microhybrid rocket engines appear to be promising area of further research.


References
[1] Bahman N.N., Belyaev A.F. Gorenie geterogennykh kondensirovannykh sistem [Combustion of heterogeneous condensed systems]. Moscow, Nauka Publ., 1967.
[2] Dementyeva D.I., Kononov I.S., Mamashev R.G., Kharitonov V.A. Vvedenie v tekhnologiyu energonasyschennykh materialov [Introduction to energy saturated materials]. Biysk–Barnaul, Altay State Technical University Publ., 2009.
[3] Kurdov S.S., Zavolokin V.E., Komkov M.A. Sozdanie tverdotoplivnyh zaryadov dlya raketnyh dvigatelej tverdogo topliva s pomoshch’yu additivnyh tekhnologij [Manufacturing of propellant grains for solid rocket motors using additive technology]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 6. http://dx.doi.org/10.18698/2308-6033-2017-6-1629
[4] Design of Multiport Grain with Hydrogen Peroxide Hybrid Rocket. Journal of Propulsion and Power, 2018, vol. 34 (5), pp. 1–9. https://doi.org/10.2514/1.B36949
[5] Fitzgerald R.P., Brewster M.Q. Gorenie sloevykh topliv (obzor). 1. Eksperimentalnye issledovaniya [Combustion of layer fuels (review). 1. Experimental study]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2005, vol. 41, no. 6, pp. 95–115.
[6] Fitzgerald R.P., Brewster M.Q. Gorenie sloevyh topliv (obzor). 2. Teoreticheskie issledovaniya [Combustion of layer fuels (review). 2. Theoretical study]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2006, vol. 42, no. 1, pp. 3–25.
[7] Nachbar W. A theoretical study of the burning of a solid propellant sandwich. In: Solid Propellant Rocket Research. M. Summerfield, ed. (Progress in Astronautics and Rocketry Series). New York, Academic Press, 1960, vol. 1, pp. 207–226.
[8] Fenn J.V. A phalanx flame model for the combustion of composite solid propellants. Combust. Flame, 1968, vol. 12, pp. 201–216.
[9] Bakhman N.N., Librovich V.B. Flame propagation along solid fuel-solid oxidizer interface. Combust. Flame, 1970, vol. 15, no. 2, pp. 143–153.
[10] Strunin V.A., Firsov A.N., Shkadinsky K.G., Manelis G.B. Zakonomernosti geterogennogo goreniya [Regularities in heterogeneous combustion]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 1989, vol. 25, no. 5, pp. 25–32.
[11] Fowling J. Experiments relating to the combustion of ammonium perchlorate-based propellants. Proc. Combust. Inst., 1967, vol. 11, pp. 447–456.
[12] Hightower J.D., Price E.W. Experimental studies relating to the combustion mechanism of composite propellants. Astronaut. Acta, 1968, vol. 14, no. 1, pp. 11–21.
[13] Price E.W., Handley J.C., Panyam R.R., et al. Combustion of ammonium perchloratepolymer sandwiches. AIAA Journal, 1981, vol. 19, no. 3, pp. 380–386.
[14] Ermolaev V.S., Korotkov L.I., Frolov Yu.V. Zakonomernosti goreniya sloevykh kondensirovannykh sistem [Regularities in the layer condensed systems combustion]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 1970, vol. 6, no. 3, pp. 277–285.
[15] Mitrofanov V.V. Detonatsiya gomogennykh i geterogennykh sistem [Detonation of homogeneous and heterogeneous systems]. Novosibirsk, Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences Publ., 2003.
[16] Andreev K.K. Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv [Thermal decomposition and combustion of the explosive substances]. Moscow, Nauka Publ., 1966.
[17] Sarner S. Propellant chemistry. New York, Reinhold Publishing, 1966 [In Russ: Sarner S. Khimiya raketnykh topliv. Moscow, Mir Publ., 1969].
[18] Tschinkel J.G. Tetranitromethane as oxidizer in rocket propellants. Ind. Eng. Chem., 1956, vol. 48, no. 4, pp. 732–735. https://doi.org/10.1021/ie50556a022
[19] Edwards G. The vapour pressure of tetranitromethane. Trans. Faraday Soc., 1952, vol. 48, art. ID 513. https://doi.org/10.1039/tf9524800513
[20] Boyd W.K., Berry W.E., White E.L. Compatibility of Materials with Rocket Propellants and Oxidizers. Battelle Memorial Institute, Defense Metals Information Center, 1965.
[21] Uney P.E., Fester D.A. Material compatibility with space storable propellants. Design Guidebook. Jet Propulsion Laboratory, California Institute of Technology, NASA, 1972.
[22] Hazardous Substance fact sheet. Tetranitromethane. New Jersey Department of Health and Senior Services. Available at: https://nj.gov/health/eoh/rtkweb/documents/fs/1836.pdf
[23] Chemical Resistance of PTFE. Available at: https://www.habiateknofluor.se/wp-content/uploads/2020/06/Chemical-Resistance-of-PTFE-2.pdf
[24] Chemical resistance of PTFE. Available at: https://www.polyfluor.nl/en/chemical-resistance/ptfe/
[25] Tisinger L.G., Carraher C.E. Nitric acid induced degradation of high density and linear medium density polyethylene: physical property sensing techniques. In: Geosynthetics: microstructure and performance. Ian D. Peggs, ed. ASTM International, 1990.
[26] Cagiao M.E., Rueda D.R., Balt F.J. Degradation of nitric acid-treated bulk polyethylene: selective removal of chain defects. Polymer Bulletin, 1980, vol. 3, pp. 305–310.
[27] Stein H.L. Ultrahigh molecular weight polyethylene (uhmwpe). Engineered Materials Handbook, 1982, vol. 2, pp. 167–171.
[28] OgiharaTaeko. Oxidative degradation of polyethylene in nitrogen dioxide. Bulletin of the Chemical Society of Japan, 1963, vol. 36, no. 1, pp. 58–63.
[29] Raketnoe toplivo [Rocket fuel]. Voennyi entsikolopedicheskiy slovar Ministerstva oborony RF [Military encyclopedic dictionary of the Ministry of Defence of the RF]. Available at: https://encyclopedia.mil.ru/encyclopedia/dictionary/details.htm?id=14449@morfDictionary
[30] Majofis I.M. Khimiya dielektrikov [Chemistry of dielectrics]. Moscow, Vysshaya Shkola Publ., 1970.
[31] Solodovnik V.D. Mikrokapsulirovanie [Microencapsulation]. Moscow, Khimiya Publ., 1980.