Experimental-analytical study of the occurrence of fuel splash through the air intake pipe of the emulsion atomizer
Authors: Niazbaev K.T., Ivchenkova I.A., Kudryavtsev V.A., Kudryavtsev A.V.
Published in issue: #7(127)/2022
DOI: 10.18698/2308-6033-2022-7-2194
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The study centers around an injector with gas-dynamic fuel atomization, i.e. an emulsion atomizer, which is not widely spread as the operating processes inside its channel and at its outlet at critical values of gas pressures and temperatures are poorly studied. First, we analyzed experimental data on the study of the fuel splash from the air intake pipe of the emulsion atomizer at various values of the oncoming air flow and the geometrical parameters of the outlet openings of the atomizer and evaluated the splash in terms of the gas dynamics of air flows inside the atomizer. Then, we developed a model that described the conditions for a fuel splash to occur from the point of view of the kinematics of the drops’ movement, and attempted to physically justify why the model was preferable. Next, we applied an analytical method to obtain a characteristic complex that linked the fuel splash phenomenon with the operating modes and geometrical parameters of the fuel distribution device. Analytical calculations made it possible to summarize the available experimental data and to obtain a graphical dependence, showing the boundary of the occurrence of a fuel splash from the air intake pipe of the emulsion atomizer. Finally, we gave recommendations to prevent the occurrence of a splash.
References
[1] Klyachko L.A. Rabochiy process v kamerakh sgoraniya PVRD [Working process in ramjet combustion chambers]. Tr. TsIAM No. 1307 [CIAM Proceedings no. 1307]. Moscow, CIAM Publ., 2002, pp. 4–5.
[2] Gorbatko A.A., Kudryavtsev A.V. Stabilizatsiya plameni i vygoranie topliva v turbulentnom potoke [Flame stabilization and fuel burnout in a turbulent flow]. Nauchny vklad v sozdanie aviatsionnykh dvigateley. V dvukh knigakh. Kniga 2 [Scientific contribution to the creation of aircraft engines. In two books. Book 2]. V.A. Skibin, V.I. Solonin, eds. Moscow, Mashinostroenie Publ., 2000, pp. 351–356.
[3] Gorbatko A.A., Kudryavtsev A.V. Obespechenie kompleksa osnovnykh kharakteristik forsazhno-pryamotochnykh kamer sgoraniya [Ensuring a set of basic characteristics of afterburner ramjet combustion chambers]. Nauchny vklad v sozdanie aviatsionnykh dvigateley. V dvukh knigakh. Kniga 2 [Scientific contribution to the creation of aircraft engines. In two books. Book 2]. V.A. Skibin, V.I. Solonin, eds. Moscow, Mashinostroenie Publ., 2000, pp. 360–363.
[4] Artemev E.V., Vostokov V.Yu., Klyachko L.A. Eksperimentalnoe issledovanie protsessa goreniya v modeli kamery sgoraniya PVRD s emulsionno-karbyuratornoy sistemoy smeseobrazovaniya [Experimental study of the combustion process in the combustion chamber model of a ramjet engine with an emulsion-carburetor mixture formation system]. In: Rabochiy process v kamerakh sgoraniya PVRD. Tr. TsIAM No. 1307 [Working process in ramjet combustion chambers. CIAM Proceedings no. 1307]. Moscow, CIAM Publ., 2002, pp. 77–95.
[5] Kudryavtsev A.V., Kuntsev G.M. Ustoychivost protsessa goreniya v kamere sgoraniya s razdelnoy podachey topliva [Stability of the combustion process in a combustion chamber with separate fuel supply]. In: Rabochiy process v kamerakh sgoraniya PVRD. Tr. TsIAM No. 1307 [Working process in ramjet combustion chambers. CIAM Proceedings no. 1307]. Moscow, CIAM Publ., 2002, pp. 6–27.
[6] Trushin Yu.M. Issledovanie goreniya v potoke pri vysokikh nachalnykh temperaturakh [Investigation of combustion in a stream at high initial temperatures]. III Vsesoyuzn. soveschanie po teorii goreniya [II All-Union. meeting on the theory of combustion]. Moscow, Institute of Chemical Physics USSR AS Publ., 1960, 79 p.
[7] Birmaher S., Zeller P.W., Wirfalt P., Neumeier Y., Zinn B.T. Fuel Injection Scheme for a Compact Afterburner Without Flame holders. ASME J. Eng. Gas Turbines Power, 2008, vol. 130, pp. 450.
[8] Kudryavtsev A.V., Gorbatko A.A. Teplofizika vysokikh temperatur — High Temperature, 2012, vol. 50, no. 5, pp. 1–3.
[9] Niazbaev K.T., Ivchenkova I.A., Kudryavtsev V.A., Kudryavtsev A.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2022, iss. 1. http://dx.doi.org/10.18698/2308-6033-2022-1-2145
[10] Dityakin Yu.F., Klyachko L.A., Novikov B.V., Yagodkin V.I. Raspylivanie zhidkostey [Atomization]. Moscow, Mashinostroenie Publ., 1977, 208 p.
[11] Khristich V.A., Savchenko V.I., Sergienko Yu.M. Kuzmenko V.I., et al. Otchet po nauchno-issledovatelskoy rabote «Eksperimentalnoe issledovanie gidrogazodinamiki toplivnykh kollektorov i struktury sleda za stabilizatornym blokom» [Report on the research work “Experimental study of the hydro-gas dynamics of fuel collectors and the wake structure behind the stabilizer block”]. Kievskiy ordena Lenina politekhnicheskiy institut imeni 50-letiya Velikoy Oktyabrskoy sotsialisticheskoy revoliutsii Publ., 1990, 52 p.