Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Computational studies to optimize the geometry of the low-thrust rocket combustion chamber using gaseous propellants

Published: 24.11.2021

Authors: Novikov A.V., Andreev E.A., Bardakova E.I.

Published in issue: #11(119)/2021

DOI: 10.18698/2308-6033-2021-11-2129

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

Due to the tough requirements for the environmental safety of the space objects operation, the use of methane-based fuel together with oxygen is a promising direction in developing a new generation of rocket and space technology, including low-thrust rocket engines. When developing low-thrust rocket engines running on oxygen-methane fuel, a mathematical experiment helps to identify the determining factors that affect the quality of the working process in the combustion chamber and to make a calculated optimization of the parameters for supplying fuel components to the combustion chamber. This contributes to a better understanding of the physics of the ongoing processes and leads to recommendations for the design of individual components of the combustion chamber. The numerical simulation enables us to optimize the geometry of the combustion chamber in order to obtain the maximum value of the chamber coefficient, which for an isobaric combustion chamber can be equal to the coefficient of the flow complex. This approach can significantly reduce the number of expensive bench tests. The paper introduces a physical and mathematical model of the workflow in the combustion chamber of a low-thrust rocket engine and gives a comparative analysis of the calculation results for various modifications of the original geometry of the low thrust rocket chamber. Recommendations are given for changing the initial geometry of the combustion chamber in order to increase the coefficient of the flow complex while maintaining a satisfactory thermal state of this chamber.

[1] Yagodnikov D.A., Chertkov K.O., Antonov Yu.V., Novikov A.V. Aerokosmichesky nauchny zhurnal. MGTU im. N.E. Baumana (Aerospace Science Journal), 2015, no. 5, pp. 12–25.
[2] Yagodnikov D.A., Antonov Yu.V., Strizhenko P.P, Bykov N.I., Novikov A.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2014, no. 6, pp. 3–19.
[3] Andreev E.A., Novikov A.V., Shatskiy O.E. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 4 (64). DOI: 10.18698/2308-6033-2017-4-1606
[4] Salich V.L. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2018, vol. 17, no. 4, pp. 129–140. DOI: 10.18287/2541-7533-2018-17-4-129-140
[5] Salich V.L. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2019, vol. 18, no. 1, pp. 118–127. DOI: 10.18287/2541-7533-2019-18-1-118-127
[6] Yagodnikov D.A., Novikov A.V., Antonov Yu.V. Nauka i obrazovanie — Science and Education, 2011, no. 12, p. 13. Available at:
[7] Acherkan N.S., ed. Spravochnik mashinostroitelya [A guidebook for the mechanical engineer]. Moscow, Mashgiz Publ., 1960, 740 p.
[8] Gosman A.D., Pan V.M., Ranchel A.K., Spalding D.B., Wolfstein M. Chislennye metody issledovaniya techeniy vyazkoy zhidkosti [Numerical Methods of Analyzing the Flow of Viscous Fluid]. Moscow, Mir Publ., 1972, 327 p. (In Russ.).
[9] Trusov B.G. Modelirovanie khimicheskikh i fazovykh ravnovesiy pri vysokikh temperaturakh. “Astra–4” [Simulation of chemical and phase equilibria at high temperatures. “Astra–4”]. Moscow, BMSTU Publ., 1992.
[10] Gosman A.D., Khalil E.E., Whitelaw J.H. The Calculation of Two-Dimensional Turbulent Recirculating Flows. In: Durst F., Launder B.E., Schmidt F.W., Whitelaw J.H., eds. Turbulent Shear Flows I. Springer, Berlin, Heidelberg, 1979. [In Russ.: Gosman A.D., Khalil E.E., Whitelaw J.H. Raschet dvumernykh turbulentnykh retsirkulyatsionnykh techeniy. V kn.: Turbulentnye sdvigovye techeniya. Ginevskiy A.S., ed. Moscow, Mashinostroenie Publ., 1982, vol. 1, pp. 247–268.].
[11] Dymov V.S. Yazyk programmirovaniya Fortran [Fortran programming language]. Moscow, Mayor Publ., 2003, 192 p.