Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Elaboration of a new calculation procedure of hydrocarbon deposit layer thickness in fuel channels of heat engines and power plants

Published: 14.10.2021

Authors: Altunin K.V.

Published in issue: #10(118)/2021

DOI: 10.18698/2308-6033-2021-10-2119

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The article is devoted to theoretical research connected with elaboration of a new calculation procedure for hydrocarbon deposit layer thickness. A common problem of deposit formation in heat engines and power plants is thoroughly investigated. In addition, the wall composition, temperature, time and a number of life cycles, etc. are mentioned as key factors that have direct influence on this heat phenomenon. The paper describes thermophysical properties of deposits in fuel feed systems of different engines. The literature search and analysis did not reveal any similar procedures of calculation of hydrocarbon deposit layer thickness that could be connected with electrical properties of a wall or a deposit. The paper presents new equations for calculating the deposit formation thickness and rate based upon thermal and electrical nature of this process. These new equations led to elaboration of the new calculation procedure of hydrocarbon deposit layer thickness on a metal wall for any fuel channel of a heat engine or a power plant based on liquid hydrocarbon fuel or coolant. The new calculation technique was verified by experiments in aviation kerosene boiling in volume, which clarified special features in the application of new equations. Owing to the universal character of the proposed technique, it can be used for calculating the deposit formation virtually in all the known heat engines and power plants, for various operating conditions, for different metal wall compositions, at various fuel flow rates and pressures, temperature regimes inside fuel-feed and cooling channels.


References
[1] Chertkov Ya.B. Sovremennye i perspektivnye uglevodorodnye reaktivnye i dizelnye topliva [Modern and perspective hydrocarbon and diesel fuels]. Moscow, Khimiya Publ., 1968, 356 p.
[2] Van Nostrand W.Z., Leach S.H., Haluske J. Economic Penalty Associated with the Fouling of Refinery Heat Transfer Equipment. Washington, 1981, pp. 619–643.
[3] Altunin V.A., Altunin K.V., Dresvyannikov F.N., et.al. Problemy vnutrikamernyh teplovyh processov v aviacionnyh, aerokosmicheskih i kosmicheskih energoustanovkah mnogorazovogo ispolzovaniya [Problems of intrachamber thermal processes in aviation, aerospace and space reusable power plants]. Sb. tez. dokl. Mezhdunar. nauchnogo seminara «Problemy modelirovaniya i dinamiki slozhnyh mezhdisciplinarnyh sistem» [Proc. of Intern. Scient. Seminar “Problems of modeling and dynamics of complex interdisciplinary systems”]. Kazan, KNITU—KAI Publ., 2010, p. 12.
[4] Altunin V.A. Issledovanie osobennostej teplootdachi k uglevodorodnym goryuchim i ohladitelyam v energeticheskih ustanovkah mnogorazovogo ispolzovaniya. Kniga pervaya. [Study of the peculiarities of heat transfer to hydrocarbon fuels and refrigerants in reusable power plants. Book one]. Kazan, KSU Publ., 2005, 272 p.
[5] Bolshakov G.F. Fiziko-khimicheskie osnovy obrazovaniya osadkov v reaktivnyh toplivah [Physical and chemical basis of sediment formation in jet fuels]. Leningrad, Khimiya Publ., 1972, 232 p.
[6] Kalghatgi G.T. Combustion chamber deposits in spark-ignition engines: a literature review. SAE, 1995, paper no. 952443.
[7] Karamangil M.I., Avci A., Bilal H. Heat Mass Transfer, 2008, vol. 44, pp. 587–598.
[8] Kelemen S.R., Siksin M., Avery N.L., Rose K.D., Solum M., Pugmire R.J. Gasoline type and engine effects on equilibrium combustion chamber deposits (CCD). SAE, 2001, paper no. 2001-01-3583.
[9] Altunin K.V. Razrabotka gorelok povyshennoj effektivnosti dlya teplovyh elektrostancij: monografiya [Development of high efficiency burners for thermal power plants: monograph]. Kazan: KNITU—KAI Publ., 2016, 136 p.
[10] Yanovskij L.S., Ivanov V.F., Galimov F.M., Sapgir G.B. Koksootlozheniya v aviacionnyh i raketnyh dvigatelyah [Carbon deposits in aircraft and rocket engines]. Kazan, Abak Publ., 1999, 284 p.
[11] Shlyakotin V.E., Shihman Yu.M. Aviatsionnye dvigateli — Aviation Engines, 2019, no. 3 (4), pp. 57–62.
[12] Altunin V.A., Monda V.A., Ablyasova A.G., Altunin K.V., et.al. Vliyanie uglevodorodnyh goryuchih na korroziyu detalej energoustanovok i tekhnosistem mnogorazovogo ispol’zovaniya v nazemnyh i kosmicheskih usloviyah [Influence of hydrocarbon fuels on the corrosion of parts of power plants and technological systems of reusable use in ground and space conditions]. Mater. dokl. 22 Vseross. mezhvuz. nauchno-tekhn. konf. «Elektromekhanicheskie i vnutrikamernye processy v energeticheskikh ustanovkakh, strujnaya akustika i diagnostika, pribory i metody kontrolya prirodnoj sredy, veshchestv, materialov i izdelij» [Proc. of 22nd All-Russ. Ac. Scient. Conf. “Electromechanical and intra-chamber processes in power plants, jet acoustics and diagnostics, devices and methods for monitoring the environment, substances, materials and products”]. Kazan, Otechestvo Publ., 2010, Part 2, pp. 87–88.
[13] Altunin K.V., Gortyshov Yu.F., Galimov F.M., et.al. Energetika Tatarstana – Power Engineering of Tatarstan, no. 2, 2010, pp. 10–17.
[14] Altunin K.V. Opredelenie skorosti osadkoobrazovaniya v energoustanovkah mnogorazovogo ispolzovaniya na uglevodorodnyh goryuchih [Determination of deposition rate in reusable power plants based on hydrocarbon fuels]. Mater. dokl. 6 Vseross. nauchno-tekhn. studench. konf. «Intensifikaciya teplo- i massoobmennykh processov v khimicheskoj tekhnologii» [Proc. of 6th All-Russ. Scient. Techn. Stud. Conf. “Intensification of heat and mass transfer processes in chemical technology”]. Kazan, Butlerovskoe nasledie Publ., 2010, pp. 41–45.
[15] Altunin K.V. Sposob prognozirovaniya osadkoobrazovaniya v energoustanovkakh mnogorazovogo ispolzovaniya na zhidkikh uglevodorodnykh goryuchikh i ohladitelyakh [Method for predicting sediment formation in reusable power plants on liquid hydrocarbon fuels and refrigerants]. Patent RF, no. 2467195, 2012.
[16] Altunin K.V. Model idealnogo osadkoobrazovaniya v energoustanovkah mnogorazovogo ispolzovaniya na zhidkih uglevodorodnyh goryuchih i ohladitelyah [Model of ideal sedimentation in reusable power plants on liquid hydrocarbon fuels and refrigerants]. Mater. dokl. 18 Mezhdunar. molodyozh. nauchnoj konf. «Tupolevskie chteniya» [Proc. 18th Int. Conf. “Tupolev’s Readings”]. Kazan, KNITU—KAI Publ, 2010, vol. 2, pp. 66–68.
[17] Udelnoe elektricheskoe soprotivlenie ot temperatury dlya razlichnyh marok staley i splavov [Resistivity as a function of temperature for various grades of steels and alloys]. Available at: https://extxe.com/21002/udelnoe-jelektricheskoe-soprotivlenie-ot-temperatury-dlja-razlichnyh-marok-stalej-i-splavov/ (accessed July 11, 2021).
[18] Saranchuk V.I., Oshovskiy V.V., Lavrenko A.T., Koshkarev Ya.M. Naukovi praci Donetskogo natsionalnogo tekhnichnogo universitetu. Seriya: "Khimiya i khimichna tekhnologiya" (Research works of the Donetsk national technical university. Series: “Chemistry and chemical technology”), 2008, no. 134 (10), pp. 138–143.
[19] Agroskin A.A., Petrenko I.G. Elektrosoprotivlenie slantsev i ugley pri nagrevanii [Electrical resistance of shale and coal when heated]. AN SSSR. OTN Publ., 1950, no. 1, pp. 89−100.