Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Calculation of minimum supply of fuel in contact with the innertank device to ensure the operation of a liquid-propellant rocket engine in zero gravity

Published: 24.03.2021

Authors: Sapozhnikov V.B., Polyanskiy A.R., Korolkov A.V.

Published in issue: #3(111)/2021

DOI: 10.18698/2308-6033-2021-3-2063

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper introduces the results of theoretical studies of the process of liquid fuel deposition in liquid-propellant rocket engine tanks under conditions of free (undisturbed) orbital (suborbital) flight under the influence of a small pre-launch overload created by auxiliary engines before the liquid-propellant sustainer starting. In this work, we estimated the relaxation time of the free volume of liquid for the most unfavorable case, and the minimum supply of the covolume for the guaranteed starting and uninterrupted operation of the liquid-propellant rocket engine in zero gravity. Furthermore, we investigated the possibility of controlling the relaxation time with a gradual or stepwise starting operation. The proposed formula makes it possible at the design stage to assess the minimum supply of fuel, which can be in contact with the innertank device before starting the liquid-propellant sustainer in zero gravity in order to ensure the uninterrupted operation of the propulsion system.


References
[1] Andreev E.A., Novikov A.V., Shatskiy O.E. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 4 (64). DOI: 10.18698/2308-6033-2017-4-1606
[2] Novikov A.V., Sukhov A.V., Andreev E.A. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 1. DOI: 10.18698/2308-6033-2017-1-1576
[3] Novikov A.V., Yagodnikov D.A., Lokhanov I.V., et al. Vestnik NPO imeni S.A. Lavochkina (Bulletin of Lavochkin Association), 2017, no. 35/1, pp. 36–42.
[4] Korolkov A.V., Sapozhnikov V.B. Lesnoy vestnik — Forestry Bulletin, 2005, no. 4, pp. 51–52.
[5] Sapozhnikov V.B., Korolkov A.V. Mathematical modeling of a spacecrafts’ fuel tank empty in-gin the orbital flight conditions. International Scientific Conference “Physical and Mathematical Problems of Advanced Technology Development” (Moscow, Bauman MSTU, 17–19 November 2014): abstracts. Moscow, BMSTU Publ., 2014, pp. 80–81.
[6] Burge G.W., Blackmon J.B., Madsen R.A. Analytical approaches for the design of orbital refueling system. AIAA Paper, 1969, no. 69–567, p. 53.
[7] Kalinin E.K., Nevrovskiy V.A. Inzhenerno-fizichesky zhurnal — Journal of Engineering Physics and Thermophysics, 1986, vol. 50, no. 6, pp. 930–934.
[8] Sapozhnikov V.B., Avraamov N.I. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, no. 2 (62), p. 1. DOI: 10.18698/2308-6033-2017-2-1581
[9] Aleksandrov A.A., Khartov V.V., Novikov Yu.M., Krylov V.I., Yagodni-kov D.A. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2015, 6 (105), pp. 130–142.
[10] Bolshakov V.A., Novikov Yu.M., Partola I.S. Sredstva obespecheniya sploshnosti zhidkikh komponentov topliva v sisteme pitaniya RB «Briz-M» s dopolnitelnym (sbrasyvaemym) toplivnym bakom [Means to ensure the continuity of liquid fuel components in the power supply system of the RB “Breeze-M” with an additional (drop) fuel tank]. XXXIV Nauchnye chteniya, posvyaschennye nauchnomu naslediyu i razvitiyu idey K.E. Tsiolkovskogo. Sb. dokl. RAN, Gosudarstvenny muzey istorii kosmonavtiki im. K.E. Tsiolkovskogo [XXXIV Scientific readings dedicated to the scientific heritage and the development of the ideas of K.E. Tsiolkovsky. Collection of reports of the Russian Academy of Sciences, State Museum of the History of Cosmonautics]. Kaluga, 1999, pp. 78–86.
[11] Korolkov A.V., Partola I.S., Sapozhnikov V.B. Teoreticheskie osnovy razrabotki i eksperimentalnoy otrabotki kapilliarnykh zabornykh ustroystv s minimalnymi ostatkami topliva [Theoretical foundations for the development and experimental testing of capillary intake devices with minimal fuel residues]. Nauchno-tekhnicheskie razrabotki OKB-23 – KB «Salyut» [Scientific and technical developments of OKB-23 - Design Bureau “Salyut”]. Moscow, Vozdushny transport Publ., 2006, pp. 313–319.
[12] Korolkov A.V., Menshikov V.A., Partola I.S., Sapozhnikov V.B. Lesnoy vestnik — Forestry Bulletin, 2007, no. 2, pp. 35–39.
[13] Novikov Yu.M., Bolshakov V.A. Bezopasnost zhiznedeyatelnosti — Life safety, 2005, no. 11, pp. 53–56.
[14] Novikov Yu.M., Bolshakov V.A. Bezopasnost zhiznedeyatelnosti — Life safety, 2002, no. 12, pp. 7–10.
[15] Labuntsov D.A., Yagov V.V. Mekhanika dvukhfaznykh system [Mechanics of two-phase systems.]. Moscow, MPEI Publ., 2000, pp. 143–146.