Simulating working bodies in the mixer of a low-thrust liquid propellant rocket engine with a thrust of 10 to 15 N: comparing three models of flow and mixing based on solving Reynolds-averaged Navier — Stokes equations
Authors: Semkin E.V.
Published in issue: #2(110)/2021
DOI: 10.18698/2308-6033-2021-2-2057
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The paper analyses the possibilities of using the ANSYS CFX hydrocode to simulate the flow and mixing of working bodies in the mixer and combustion chamber of a low-thrust liquid propellant rocket engine in the thrust range of 10 to 15 N. We built our models around solving Reynolds-averaged Navier — Stokes equations stated for three types of multiphase multicomponent incompressible fluid flow: a two-phase two-component two-velocity flow model; a two-phase two-component single-velocity flow model; a three-phase three-velocity flow model. We consider the advantages and disadvantages of each model. We compare our simulation results to the results of measurements conducted during hydraulic testing of mixers.
References
[1] Andreev Yu.Z. Issledovanie zavisimostey kharakteristik ZhRDMT tyagoy 50...400 N na toplive AT+NDMG ot osnovnykh parametrov dvukhkomponentnoy soosnoy tsentrobezhnoy forsunki i struynykh forsunok zavesy. Diss. kand. tekhn. nauk [Investigating how the properties of low-thrust liquid propellant rocket engines with a thrust of 50 to 400 N using NTO+UDMH fuel depend on the main parameters of a coaxial bicentrifugal injector and spray injectors of the cooling curtain. Cand. Eng. Sc. Diss.]. Nizhnyaya Salda, 2004, 181 p.
[2] Gradov V.N. Issledovanie vnutrikamernykh rabochikh protsessov v ZhRDMT s tselyu povysheniya ikh ekonomichnosti. Diss. kand. tekhn. nauk [Investigating work cycles in combustion chambers of low-thrust liquid propellant rocket engines in order to improve their efficiency. Cand. Eng. Sc. Diss.]. Kuybyshev, 1974.
[3] Tsarapkin V.S. Osobennosti protsessa preobrazovaniya zhidkogo raketnogo topliva NDMG+N2O4 v kamerakh ZhRDMT. Avtoref. diss. kand. tekhn. nauk [Transformation specifics of UDMH+N2O4 liquid rocket propellant in combustion chambers of low-thrust liquid propellant rocket engines. Autoref. Cand. Eng. Sc. Diss.]. Leningrad, 1982, 18 p.
[4] Nigodyuk V.E., Godlevskiy V.E., Shustov S.A., et al. Issledovanie struktury poter udelnogo impulsa davleniya v kamere sgoraniya ZhRDMT tyagoy 100N [Investigating the structure of specific pressure impulse losses in the combustion chamber of low-thrust liquid propellant rocket engine with a thrust of 100 N]. Otchet Kuybyshevskogo aviatsionnogo instituta (KuAI) [Proc. of Kuybyshev Aviation Institute]. Kuybyshev, 1976, no. 338, 108 p.
[5] Semkin E.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie — Vestnik of Samara University. Aerospace and mechanical engineering, 2016, vol. 15, no. 4, pp. 150–161. DOI: 10.18287/2541-7533-2016-15-4-150-161
[6] Semkin E.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie — Vestnik of Samara University. Aerospace and mechanical engineering, 2018, vol. 17, no. 4, pp. 141–154. DOI: 10.18287/2541-7533-2018-17-4-141-154
[7] Tumanova E. Zhurnal SAPR i grafika (Journal of CAD and graphics), 2005, no. 9, pp. 2–6.
[8] Serbin S.I., Vilkul S.V. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya — Aerospace technic and technology, 2008, no. 7 (54), pp. 95–98.
[9] ANSYS CFX-Solver, Release 10.0: Theory. ANSYS Europe Ltd., 2005, 266 p.
[10] Sternin L.E., Shrayber A.A. Mnogofaznye techeniya gaza s chastitsami [Multi-phase gas flows with particles]. Moscow, Mashinostroenie Publ., 1994, 320 p.