Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Parametric study of ramjet engine thrust characteristics

Published: 09.08.2020

Authors: Voronetskiy A.V., Smolyaga V.I., Abramov M.A., Miroshnichenko S.A.

Published in issue: #8(104)/2020

DOI: 10.18698/2308-6033-2020-8-2004

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

To choose the aircraft layout scheme, in particular the power plant flow path configuration, and its integration with the aircraft fuselage, is an important engineering task requiring long-term experimental processing. The time and cost of designing an aircraft, in particular the one with a ramjet engine can be significantly reduced by using numerical methods. This paper describes a small-sized aircraft with a pulling scheme ramjet engine. We carried out a comparative analysis of the efficiency of using the power plant of two layout schemes as part of a small-sized aircraft. As a measure of power plant efficiency, we took the value of the aerodynamic balance of the aircraft, by which the difference between the engine thrust and the force of the external aerodynamic drag of the aircraft fuselage is meant. Within the study, we came up with the dependences of the aerodynamic balance value on the excess-air coefficient in the afterburner of the ramjet engine. Moreover, we determined the operating parameters of the engine, at which the aircraft maintains a constant speed. Finally, we presented a mathematical model for calculating the thrust and economic characteristics of a power plant in an aircraft. The data obtained can be used in the design and development of advanced-technology aircraft with an intra-atmospheric zone of operation.


References
[1] Obnosov B.V., Sorokin V.A., Yanovskiy L.S. Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigateley na tverdom toplive [Design and engineering of solid propellant rocket engines]. Moscow, BMSTU Publ., 2012, 279 p.
[2] Presnyakov S.V., Usachev V.A., Koryanov V.V., Kudryavtseva N.V. Izvestiya vysshykh uchebnykh zavedeniy. Mashinostroenie ― BMSTU Journal of Mecha-nical Engineering, 2018, no. 7 (700), pp. 61–68.
[3] Skibin V.A., Solonin V.I., ed. Inostranniye aviatsionniye dvigateli (po materialam zarubezhnykh publikatsiy) [Foreign aircraft engines (based on materials from foreign publications]. Moscow, CIAM Publ., 2005, no. 14, pp. 320‒322.
[4] Makarovets N.A., Belobragin B.A., Ustinkin A.I., Dolganov M.E., Ivanov I.V., Spirin K.V., Smolyaga V.I. Aktivno-reaktivniy snaryad [Rocket-assisted projectile]. Patent RF no. 2546355 S1, MPK F42В 12/46. 2015. Bul. no. 10.
[5] Makarovets N.A., Ivanov I.V., Zakharov S.O., Smolyaga V.I., Maksimov S.S., et al. Raketa s vozdushno-reaktivnym dvigatelem [Rocket with a ramjet engine]. Patent RF no. 2585211 S1, MPK F42В 12/46. 2016. Bul. no. 15.
[6] Smolyaga V.I. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. Problemy spetsialnogo mashinostroeniya ― Izvestiya “Tula State University” (Izvestiya TulGU), 2016, no. 12 (sp. no. 17), part 5, pp. 30‒34.
[7] Timoshenko V.I., Deshko A.E. Tekhnicheskaya mekhanika ― Technical Mechanics, 2016, no. 1, pp. 3–10.
[8] Timoshenko V.I., Galinskiy V.P. Tekhnicheskaya mekhanika — Technical Mechanics, 2017, no. 3, pp. 16–22.
[9] Bosnyakov S.M., Mikhaylov S.V., Yatskevich N.S. Ucheniye zapiski TSAGI - TsAGI Science Journal, 1989, vol. 20, no. 6, pp. 89–95.
[10] Lebed V.G., Kalkamanov S.A., Ilenko E.Yu. Sistemy obrabotki informatsii (Information processing systems), 2014, no. 4, pp. 36‒39.
[11] Mkhitaryan A.M. Aerodinamika [Aerodynamics]. 2nd ed. Moscow, Mashinostroenie Publ., 1976, 448 p.
[12] Evseev D.D. Ucheniye zapiski TSAGI — TsAGI Science Journal, 1989, vol. 9, no. 6, pp. 56–66.
[13] Golovkin M.A., Kochish S.I., Kritskiy B.S. Trudy MAI (MAI Proceedings), 2012, no. 55, pp. 1–16. Available at: https://mai.ru/upload/iblock/bb9/metodika-rascheta-aerodinamicheskikh-kharakteristik-kombinirovannoy-nesushchey-sistemy-letatelnogo-apparata.pdf (accessed July 18, 2019).
[14] Trusov B.G. Baza dannykh i programmnyy kompleks Terra [Database and software package Terra]. Moscow, BMSTU Publ., 2013.
[15] Vasilev A.P., Kudryavtsev V.M., Kuznetsov V.A., Kurpatenkov V.D., Obelnitsky A.M. Osnovy teorii i rascheta zhidkostnykh raketnikh dviagateley [Fundamentals of the theory and calculation of liquid rocket engines]. Moscow, Vysshaya shkola Publ., 1983, 704 p.
[16] Arefev K.Yu., Voronetskiy A.V., Prokhorov A.N., Yanovskiy L.S. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2017, no. 3, pp. 42‒52.
[17] ANSYS, programmniye produkty — CADFEM [ANSYS, software — CADFEM]. Available at: https://www.cadfem-cis.ru/products/ansys/ (accessed July 18, 2019).
[18] Bykov L.V., Nikitin P.V., Pashkov O.A. Trudy MAI (MAI Proceedings), 2014, no. 78, p. 19. Available at: https://mai.ru/upload/iblock/8c5/8c5f5435157866c3da79eef4568cc49b.pdf (accessed July 18, 2019).
[19] Loytsyansky L.G. Mekhanika zhidkostey i gasov [Mechanics of liquids and gases]. Moscow ― Leningrad, Gostekhizdat Publ., 1950, 676 p.
[20] Langtry R.B., Menter F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 2009, vol. 47 (12), pp. 2894–2906.
[21] Lavrukhin G.N. Ucheniye zapiski TSAGI — TsAGI Science Journal, 1975, vol. 6, no. 3, pp. 105–111.