Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

An experimental space-purpose solar cell with a carbon fiber honeycomb frame: features of development and test results

Published: 09.08.2020

Authors: Naumova A.A., Lebedev A.A., Vagapova N.T., Kagan M.B., Sineva M.V.

Published in issue: #8(104)/2020

DOI: 10.18698/2308-6033-2020-8-2003

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The study describes the design, the process of developing and testing an experimental solar cell of S ≈ 110 cm2 for spacecraft with a photogenerating part of three-stage photovoltaic converters on a carbon fiber reinforced plastic honeycomb frame coated with a polyamide. The honeycomb frame was developed and introduced by Keldysh Research Center; design, assembly and testing of an experimental prototype of the solar cell were carried out in JSC SPU «Kvant». The main advantage of the considered sample of the solar cell is a low construction height of the carbon fiber frame with the formed photogenerating part, which increases the power in the starting volume and the specific power at the optimum point while maintaining the required rigidity, lightness, high vibration resistance, resistance to weathering and increased operational reliability. The test modes were selected similar to the ones for solar cells of spacecraft, designed to operate in geostationary orbit. The following tests were carried out: thermal cycling, high humidity, strength with exposure to sinusoidal vibration. Before and after testing of each type, the solar cell was monitored; the electrical insulation resistance and electrical characteristics were checked on a pulsed simulator of an extra-atmospheric sun at room temperature. The test results were recognized as successful: the most sensitive characteristic - short-circuit current, in comparison with the initial value showed a decrease of only 3 %.

[1] Slyschenko E.V., Naumova A.A., Lebedev A.A., Genali M.A., Vagapova N.T., Zhalnin B.V. Sibirskiy zhurnal nauki i tekhnologii — Siberian Journal of Science and Technology, 2018, vol. 19, no. 2, pp. 308‒324.
[2] Rauschenbach H.S. Solar Cell Array Design Handbook. The Principles and Technology of Photovoltaic Energy Conversion. Springer Netherlands, 1980, 549 p. [In Russ.: Rauschenbach H.S. Spravochnik po proyektirovaniyu solnechnykh batarey. Koltun M.M., ed. Moscow, Energoatomizdat Publ., 1983, 360 p.].
[3] Sharps P., Aiken D., Cho B., Cruz S., Derkacs D., Fatemi N., Haas A., Kerestes C., Miller N., Pantha B., Patel P., Stan M., Stavrides A., Steinfeldt J., Struempel C., Whipple S. Next generation radiation hard IMM space solar cells. E3S Web of Conferences 16, ESPC 2016, 2017, 03002. DOI: 10.1051/e3sconf/20171603002
[4] Guter W., Dunzer F., Ebel L., Hillerich K., Köstler W., Kubera T., Meusel M., Postels B., Wächter C. Space solar cells – 3G30 and next generation radiation hard products. E3S Web of Conferences 16, ESPC 2016, 2017, 03005. DOI: 10.1051/e3sconf/20171603005
[5] Suarez F., Liu T., Sukiasyan A., Lang J., Pickett E. Advances in dilute nitride multi-junction solar cells for space power applications. E3S Web of Conferences 16, ESPC 2016, 2017, 03006. DOI: 10.1051/e3sconf/20171603006
[6] Kagan M.B., Zhalnin B.V., Vagapova N.T., Slyschenko E.V., Lednev A.M., Lebedev A.A. Uluchshenie energomassovykh kharakteristik geteroperekhodnykh trokhkaskadnykh fotopreobrazovateley kosmicheskogo naznacheniya [Improving the energy-mass characteristics of heterojunction three-stage space-purpose photoconverters]. Elektronnyye i elektromekhanicheskiye sistemy i ustroystva: sbornik nauchnykh trudov [Electronic and electromechanical systems and devices: collection of scientific papers]. Tomsk, Publishing house of Tomsk Polytechnic University, 2016, pp. 411–416.
[7] Cappelluti F., Ghione G., Gioannini M., Bauhuis G., Mulder P., Schermer J., Cimino M., Gervasio G., Bissels G., Katsia E., Aho T., Niemi T., Guina M., Kim D., Wu J., Liu H. Novel concepts for high-efficiency lightweight space solar cells. E3S Web of Conferences 16, ESPC 2016, 2017, 03007. DOI: 10.1051/e3sconf/20171603007
[8] Nesterishin M.V., Stadukhin N.V., Kryuchkov P.A. Sovremennyye sistemy elektropitaniya kosmicheskikh apparatov informatsionnogo obespecheniya proizvodstva AO «ISS» [Modern power supply systems for spacecraft of production information support in JSC ISS-Reshetnev Company]. In: Aktualnye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamentalnykh i prikladnykh nauchnykh issledovaniy [Important issues of designing automatic spacecraft for fundamental and applied scientific research]. Issue 2. Khimki, Lavochkin Association Publ., 2017, pp. 476–483.
[9] Bilalov B.A., Sarkarov R.N., Safaraliev G.K. Solnechnyy modul [Solar module]. Patent RF no. 2468305, 2012, bul. 33. 5 p.
[10] Bezruchko K.V., Gaydukov V.R., Gubin S.V., et al. Solnechnye batarei avtomaticheskikh kosmicheskikh apparatov (komponovka na KA, konstruktsii uzlov, proyektirovochnyye raschety) [Solar batteries of automatic spacecraft (layout on spacecraft, node designs, design calculations)]. Kharkov, National Aerospace University “KhAI”, 2001, 276 p.
[11] Geller B.E., ed. Spravochnik po kompozitsionnym materialam [Composite materials reference book]. In 2 books. Book 2. Moscow, Mashinostroenie Publ., 1988, 584 p.
[12] Gaydachuk A.V., Karpikova O.A., Kondratyev A.V., Slivinsky M.V. Sotovyye zapolniteli i panelnyye konstruktsii kosmicheskogo naznacheniya [Space honeycomb and panel structures]. In 2 vol. Kharkov, National Aerospace University “KhAI”, 2012, 279 p.
[13] Slivinsky V.I., Tkachenko G.V., Slivinsky M.V., Gaydachuk V.E., Gaydachuk A.V. estnik Sibirskogo gos. aerokosm. un-ta imeni akad. M.F. Reshetnev — Bulletin of the Siberian State aerospace university named after acad. M.F. Reshetnev, 2008, no. 1, pp. 136–141.
[14] Drondin A.V., Zernov O.D., Yanchur S.V. Sposob izgotovleniya yacheistogo sotovogo zapolnitelya iz kompozitsionnykh materialov [A method of manufacturing a cellular honeycomb aggregate from composite materials]. Patent RF, no. 2623781, 2017, bul. no. 19, 7 p.
[15] Samsonenko B.N. Sposob izgotovleniya fotopreobrazovatelya so vstroyennym diodom [A method of manufacturing a photoconverter with a built-in diode]. Patent RF, no. 2645438, 2016, bul. no. 6, 13 p.
[16] Imaizumi M., Takamoto T., Kaneko N., Nozaki Y., Ohshima T. Qualification test results of IMM triple-junction solar cells, space solar sheets, and lightweight & compact solar paddle. E3S Web of Conferences 16, 2017, 03012. DOI: 10.1051/e3sconf/20171603012