The high-temperature TEC at reduced cesium vapor pressures and with the ultrahigh-temperature collector
Authors: Yashin M.S., Onufriev V.V.
Published in issue: #4(100)/2020
DOI: 10.18698/2308-6033-2020-4-1972
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The current-voltage characteristics of a high-temperature thermionic energy converter (TEC) with a homogeneous and macroscopically inhomogeneous (component) collector at a reduced cesium vapor pressure were calculated numerically. The case when the surface of the TEC collector is a set of periodically located macroscopic elements with different work function is considered. Based on a comparative analysis of the distributions of the parameters of low-temperature cesium plasma along the length of the interelectrode gap for various points of the current-voltage characteristics for two collector options, qualitative conclusions are made about the difference between the processes that occur in the converter with a component collector and the effect of these processes on the course of the current-voltage characteristic. The results indicate the advantage of the TEC with a component collector relative to a converter with a homogeneous collector, in the most interesting, from the point of view of generating electric energy (maximum output power), current-voltage characteristics. To obtain quantitative dependences of the influence of macroscopic in homogeneity of the collector on the electron work function on the output characteristics of a high-temperature TEC, it is necessary to conduct optimization numerical experiments and experimental studies.
References
[1] Onufrieva E. V., Onufriev V. V., Sinyavsky V. V. Vysokotemperaturnye sistemy preobrazovaniya toka perspektivnyh kosmicheskih energodvigatelnyh ustanovok [High-Temperature current conversion systems for advanced space power propulsion systems]. Proceedings of the Russian Academy of Sciences. Energy, 2009, no. 4, pp. 137–144.
[2] Onufrieva E.V., Grishin Yu.M., Sidnyaev N.I., Sinyavsky V.V., Ivashkin A.B., Onufriev V.V. O raschete harakteritik razryada v vysokovoltnom plazmennom termoemissionnom diode v regime obratnogo toka [On calculating discharge characteristics in a high-voltage plasma thermionic diode in reverse current mode]. Proceedings of the Russian Academy of Sciences. Energy, 2017, no. 6, pp. 87–96.
[3] Onufrieva E.V., Grishin Yu.M., Sidnyaev N.I., Sinyavsky V.V., Ivashkin A.B., Onufriev V.V. O raschete napryageniya zajiganiya obratnogo dugovogo razryada v vysokovoltnom termoemissionnom diode [On calculating the ignition voltage of a reverse arc discharge in a high-voltage plasma thermionic diode]. Proceedings of the Russian Academy of Sciences. Energy, 2018, no. 4, pp. 108–115.
[4] Sherbinin P.P. Generatory pryamogo preobrazovaniya teplovoi i khimicheskoi energii v elektricheskuyu. T. 6: Termoemissionnye preobrazovately [Direct conversion of thermal and chemical energy to electrical energy. T. 6: Thermionic converters]. Moscow, VINITI RAS, 1981, 242 p.
[5] Yashin M.S., Onufriev V.V. Ob osobennostyakh raboty sostavnogo vysokotemperaturnogo kollektora v termoemissionnom preobrazovatele pri ponizhennom davlenii parvo tsesiya [On the features of the composite high-temperature collector performance in the thermionic converter at reduced cesium pressures]. Engineering Journal: Science and Innovation, 2016, iss. 7. http://dx.doi.org/10.18698/2308-6033-2016-7-1514
[6] Moyzhesa B.Ya., Pikusa G.E., ed. Termoemissionnye preobrazovateli i nizkotemperaturnaya plazma [Thermionic converters and low-temperature plasma]. Moscow, Nauka Publ., 1973, 480 p.
[7] Stakhanov I.P., ed. Fizicheskie osnovy termoemissionnogo preobrazovaniya energii [Physical fundamentals of thermionic energy conversion]. Moscow, Atomizdat Publ., 1973, 376 p.
[8] Babanin V.I., Sitnov V.I., Ender A.Y., Soloviev A.V. Study of the reverse current range in a Knudsen diode with surface ionization under over neutralized conditions in the presence of electron emission from the collector: part II. Small electrode spacing. Technical Physics. The Russian Journal of Applied Physics, 2002, vol. 12, pp. 1518–1523.
[9] Kuznetsov V.I., Ender A.Y. Stability theory of Knudsen plasma diodes. Plasma Physics Reports, 2015, vol. 11, pp. 905–917.
[10] Shuander Yu.A., Yuditskiy V.D. Vliyanie otrazheniya elektronov ot kollektora na VAKH TEP [The influence of electron reflection near collector to I-V curve of TEC]. In: Reports on Conference on the thermionic energy conversion. Obninsk, Phis-En. Institute, 1979, pp. 76–77.
[11] Kaibyshev V.Z., Lysikov A.V. Influence of the collector emission properties on the efficiency of thermionic energy converter in the arc regime. Atomic energy, 2000, vol. 3, pp.709–715.