Experimental investigation of density and thermal capacity of liquid pure hydrazine
Authors: Altunin V.A., Davlatov N.B., Zaripova M.A., Safarov M.M., Aliev I.N., Yanovskaya M.L.
Published in issue: #11(95)/2019
DOI: 10.18698/2308-6033-2019-11-1934
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The paper presents the results of experimental investigation concerning density and thermal capacity of liquid pure hydrazine undergoing natural convection when heated to Т = 293…560 K and subjected to pressure р = 0.101 MPa. We compare the results obtained to results published previously elsewhere, revealing inaccuracies in equations used to compute density and thermal capacity. Analysing the experimental results obtained enabled us to develop new equations that ensure highly accurate computations of density and thermal capacity of liquid pure hydrazine. This submission becomes extremely important, as pure liquid hydrazine is widely used in expendable and non-expendable liquid rocket engines, especially in expendable and non-expendable low-thrust liquid rocket engines and liquid micro-rocket engines, which makes it impossible to develop and build novel promising engines without accurate equations for computing density, thermal capacity and other thermophysical properties of the fuel. Moreover, the investigation results and the innovative accurate equations derived by the authors allow us to conduct other experimental studies dedicated to increasing the density and other thermophysical properties of liquid pure hydrazine, for example, by means of introducing dry fullerenes into the hydrazine or employing electrostatic fields, which will be further described in detail in the papers to follow.
References
[1] Gaponenko O.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 6 (90). DOI: 10.18698/2308-6033-2019-6-1893
[2] NASA Strategic Technology Investment Plan. NASA, Office of the Chief Technologist, 2017. Available at: https://www.nasa.gov/sites/default/files/atoms/files/2017-8-1_stip_final-508ed.pdf (accessed May 24, 2018).
[3] Kolomentsev A.I., Baykov A.V., Martynenko S.I., Yakutin A.V., Yanovskiy L.S., Telichkin D.S., Tsygenkhagen Sh. Izv. vuzov. Aviatsionnaia tekhnika (University Proceedings. Aeronautical engineering), 2010, no. 2, pp. 53–55.
[4] Bolshakov G.F. Khimiya i tekhnologiya komponentov zhidkogo raketnogo topliva [Chemistry and manufacturing of liquid rocket fuel components]. Leningrad, Khimiya Publ., 1983, 320 p.
[5] Khavkin A.V., Gulyaeva L.A., Belousov A.I. Mir nefteproduktov. Vestnik neftyanykh kompaniy — World of Oil Products. The Oil Companies’ Bulletin, 2015, no. 4, pp. 13–16.
[6] Averkov I.S., Demskaya I.A., Katkov R.E., Raznoschikov V.V., Samsonov D.A., Tupitsyn N.N., Yanovskiy L.S. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2017, no. 4 (19), pp. 46–51.
[7] Dubovkin N.F., Yanovskiy L.S., Shigabiev T.N., Galimov F.M., Ivanov V.F. Inzhenernye metody opredeleniya fizikokhimicheskikh i ekspluatatsionnykh svoystv topliv [Engineering methods of estimating physical, chemical and performance properties of propellants]. Kazan, Master Layn Publ., 2000, 378 p.
[8] Yanovskiy L.S., ed. Energoemkie goryuchie dlya aviatsionnykh i raketnykh dvigateley [Powerful fuels for aerospace engines]. Moscow, FIZMATLIT Publ., 2009, 400 p.
[9] Danilov A.M. Primenenie prisadok v toplivakh [Using fuel additives]. 3rd ed. St. Petersburg, Khimizdat Publ., 2010, 360 p.
[10] Sidorov L.N., Yurovskaya M.A., Borshchevskiy A.Ya., Trushkov I.V., Ioffe I.N. Fullereny [Fullerenes]. Moscow, Ekzamen Publ., 2005, 688 p.
[11] Mekalova N.V. Fullereny v rastvorakh [Fullerenes in solutions]. Ufa, Ufa State Petroleum Technological University Publ., 2001, 107 p.
[12] Shpilevskiy E.M. Nauka i Innovatsii — Science and Innovation, 2006, no. 5, pp. 32–38.
[13] Terekhov A.I., Terekhov A.A. Rossiyskiy khimicheskiy zhurnal — Russian Journal of General Chemistry, 2006, vol. 50, no. 1, pp. 114–118.
[14] Vityaz P.A., ed. Fullereny i nanostruktury v kondensirovannykh sredakh [Fullerenes and nanostructures in condensed media. Proc.]. Sb. nauch. st. Minsk, A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus Publ., 2018, 299 p.
[15] Altunin V.A., Altunin K.V., Aliev I.N., Gortyshov U.F., Dresvyannikov F.N., Obukhova L.A., Tarasevich S.E., Yanovskaya M.L. Journal of Engineering Physics and Thermophysics, 2012, vol. 85, no. 4, pp. 959–976.
[16] Aliev I.N., Yurchenko S.O., Nazarova E.V. Inzhenernofizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2007, vol. 80, no. 5, pp. 64–69.
[17] Altunin V.A., Davlatov N.B., Zaripova M.A., Safarov M.M., Platonov E.N., Yanovskaya M.L. Sposoby povysheniya effektivnosti teplofizicheskikh i termodinamicheskikh svoystv zhidkikh uglevodorodnykh i azotosoderzhashchikh goryuchikh dlya dvigateley i energoustanovok kosmicheskogo primeneniya [Methods of improving thermophysical and thermodynamical efficiency of liquid hydrocarbon and nitrogenated fuels for engines and power plants intended for space use]. Tr. 53-kh chteniy, posvyashchennykh razrabotke nauchnogo naslediya i razvitiyu idey K.E. Tsiolkovskogo (Kaluga, 18–19 sentyabrya 2018 g.), RAN, RAKTs [Proc. of 53rd Readings dedicated to developing the scientific legacy and ideas of K.E. Tsiolkovsky (Kaluga, September 18–19th, 2018), Russian Academy of Sciences, Interregional public organization Russian Academy of Cosmonautics named after K.E. Tsiolkovsky]. Kazan, Kazan University Publ., 2019, pp. 138–148.
[18] Altunin V.A., Abdullin M.R., Platonov E.N., Davlatov N.B., Zaripova M.A., Safarov M.M., Yanovskaya M.L. Razrabotka sposobov povysheniya effektivnosti teplofizicheskikh i termodinamicheskikh svoystv zhidkikh uglevodorodnykh i azotosoderzhashchikh goryuchikh i okhladiteley dlya dvigateley giperzvukovykh, aerokosmicheskikh i kosmicheskikh letatelnykh apparatov [Developing methods of improving thermophysical and thermodynamical efficiency of liquid hydrocarbon and nitrogenated fuels and coolants for engines of hypersonic, aerospace and orbital aircraft]. Materialy dokl. 43-kh Akademicheskikh chteniy po kosmonavtike, posvyashchennykh pamyati akad. S.P. Korolva i drugikh vydayushchikhsya otechestvennykh uchenykh pionerov osvoeniya kosmicheskogo prostranstva [Proc. of Academic Readings on Cosmonautics devoted to the memory of S.P. Korolev, Academician, and other distinguished Russian scientists, space exploration pioneers]. Moscow, BMSTU Publ., 2019, vol. 2, pp. 71–72.
[19] Altunin V.A., Davlatov N.B., Zaripova M.A., Platonov E.N., Yanovskaya M.L. Zhurnal Voenmekh. Vestnik BGTU — VOENMEH. Journal of Baltic State Technical University, 2019, no. 55, pp. 424–429.
[20] Altunin V.A., Davlatov N.B., Zaripova M.A., Safarov M.M., Aliev I.N., Yanovskaya M.L. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 10. Available at: http://dx.doi.org/10.18698/2308-6033-2019-10-1922