Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Air-to-air heat exchangers of the high-pressure turbine rotor cooling system in modern aviation turbojet

Published: 29.11.2018

Authors: Nesterenko V.G., Abbavaram R.R.

Published in issue: #11(83)/2018

DOI: 10.18698/2308-6033-2018-11-1827

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The article considers efficiency of design options for an air-to-air heat exchanger(HE) installed in the bypass section of the turbofan engines, its modifications, differing in shape and diameter of the tubes, orientation of tube bundles in the axial or circumferential direction, etc. All calculations were performed using ANSYS CFX program and the preferred designs were chosen according to the level of temperature drop of cooling air, pressure loss inside the tubes and in the bypass section of the aircraft engine. A constructive scheme has been developed for two in-line tubular air-to-air heat exchangers in which the air drawn from the intermediate stage and behind the high-pressure compressor is simultaneously cooled. The scientific novelty is the use of the concept of micro laminarizers installed inside the tubes on a smooth wall, which allows to intensify the heat exchange inside the tubes with a minimal increase in pressure losses of the cooled air

[1] Ivanov V.L., Leontev A.I., Manushin E.A., Osipov M.I. Teploobmennyye apparaty i sistemy okhlazhdeniya gazoturbinnykh i kombinirovannykh ustanovok [Heat exchangers and cooling systems of gas turbine and power plants of flying apparatus]. Leontev A.I., ed. Moscow, Bauman MSTU Publ., 2004, 592 p.
[2] Inozemcev A.A., Nihamkin M.A., Sandraclii V.L. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok [Basics of designing aircraft gas turbine engines]. Moscow, Mashinostroenie Publ., 2008, vol. 2, 368 p.
[3] Nesterenko V.V., Nesterenko V.G. Vestnik Moskovskogo aviatsionnogo instituta — Bulletin of the Moscow Aviation Institute, 2009, vol. 16, no. 6, pp. 82–92.
[4] Nesterenko V.G., Abbavaram R.R. Improvement of the design and methods of designing tubular air-to-air heat exchangers cooling systems of gas turbines. Proceedings of the 30th congress of ICAS 2016 Daejong, South Korea. Available at:
[5] Bakulev V.I., Golubev V.A., Krylov B.A. et al. Teoriya, raschet i proyektirovaniye aviatsionnykh dvigateley i energeticheskikh ustanovok [Theory, design and calculation of aircraft engines and power plants]. Moscow, MAI Publ., 2003, 688 p.
[6] Abbavaram R.R., Nesterenko V.G.. Nauchno–tekhnicheskiy vestnik Povolzh
[7] Abbavaram R.R., Nesterenko V.G.. Nauchno–tekhnicheskiy vestnik Povolzh’ya — Scientific and Technical Volga region Bulletin, 2017, no. 6, pp. 75–79.
[8] Inozemsev A.A., Semeonov A.N., Rubinov V.O. et al. Dvigatel — Engine, 2008, no. 1, pp. 15–18.
[9] Ardatov K.V., Nesterenko V.G., Ravikovich U.A. Povysheniye effektivnosti i nadezhnosti raboty plastinchatykh rekuperatorov nazemnykh GTU. Tez. dokl. [Abstracts of the report “Improving the efficiency and reliability of plate heat exchangers on ground-based gas turbines”]. Trudy 59-y Nauchno-tekhnicheskoy sessii po problemam gazovykh turbin [Proceedings of the 59th Scientific and Technical Session on Gas Turbines]. St. Petersburg, REP Holding, 2012, pp. 78–79.
[10] Kays V.M., London A.L. Kompaktnyye teploobmenniki [Compact heat exchangers]. Moscow, Leningrad, Energoatomizdat Publ., 1982, 224 p.
[11] Kalinin E.K. Effektivnyye poverkhnosti teploobmena [Effective heat exchange surfaces. Monograph]. Moscow, Energoatomizdat Publ., 1998, 408 p.
[12] Incropera F.P., Lavine A.S., De Witt D.P. Fundamentals of Heat and Mass Transfer. 6th edition. New Jersey, John Wiley & Sons, 2007, 997 p.
[13] Cengel Y.A., Ghajar A.J. Heat and Mass Transfer. 5th edition. Tata McGraw Hill Education Private Limited, 2013, 902 p.
[14] Kulinichenko V.R. Teploobmennyye raschety [Heat transfer calculations. Monograph]. Kiev, Tekhnika Publ., 1990, 165 p.
[15] Dreitser G.A. Kompaktnyye teploobmennyye apparaty [Compact heat exchangers]. Moscow, MAI Publ., 1986, 74 p.
[16] Dzyubenko B.V., Kraev V.M., Myakochin A.S. Zakonomernosti i raschet nestatsionarnykh turbulentnykh techeniy i teplomassoobmena v kanalakh energeticheskikh ustanovok [Regularities and calculation of unsteady turbulent flows and heat and mass transfer in the channels of power plants]. Moscow, MAI-PRINT Publ., 2008, 384 p.
[17] Laptev A.G., Nikolaev N.A., Basharov M.M. Metody intensifikatsii i modelirovaniya teplomassoobmennykh protsessov [Methods of intensification and modeling of heat mass transfer processes]. Moscow, Teplotekhnika Publ., 2011, 335 p.
[18] Nesterenko V.V., Nesterenko V.G. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya — Aerospace Technic and Technology, 2014, no. 7, pp. 83–93.
[19] Mamaev M. A. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya — Aerospace Technic and Technology, 2011, no. 7 (84), pp. 165–169.