Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Unified mathematical model of ignition and combustion of single particles of aluminum diboride

Published: 26.05.2017

Authors: Papyrin P.V., Sukhov A.V., Yagodnikov D.A.

Published in issue: #6(66)/2017

DOI: 10.18698/2308-6033-2017-6-1651

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The study focuses on the unified mathematical model of ignition and burning of a single particle of aluminum diboride in a gaseous oxidizing medium. It is assumed that particle of aluminum diboride is an alloy of boron and aluminum, wherein the part of the surface occupied by each of the elements is proportional to their mole fraction in the alloy, and on the particle surface on the respective surfaces proportional to the mole fraction of each element in the alloy there occur competing reactions of aluminum and boron oxidation. It is generally thought that between the particle and the environment there occurs radiative and convective heat transfer. The model is based on the experimental dependences of kinetics of oxidation and combustion reactions of single particles of boron and aluminum. In our research we identified the ignition criteria of particles conglomerate and obtained the dependences of ignition induction time and combustion time on the initial values of the ambient temperature and aluminum diboride particle diameter.

[1] Sorokin V.A., Yagodnikov D.A., Khomyakov I.I., Suchkov S.A., Sukhov A.V. Nauka i obrazovanie - Science and Education, 2014, no. 6. DOI: 10.7463/0614.0713972
[2] Yagodnikov D.A., Khomyakov I.I., Burkov A.S. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie - Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2014, no. 3, pp. 101-109.
[3] Yagodnikov D.A., Papyrin P.V., Sukhov A.V. Nauka i obrazovanie - Science and Education, 2014, no. 12. DOI: 10.7463/1214.0739006
[4] Zolotko A.N., Ushakova N.A., Demirova M.V. Fizika aerodispersnykh sistem - Physics of aerodisperse systems, 2010, no. 47, pp. 91-99.
[5] Zolotko A.N., Klyachko L.A. Fizika goreniia i vzryva - Combustion, Explosion and Shock Waves, 1979, vol. 15, no. 3, pp. 3-10.
[6] Gurevich M.A., Ozerov E.S., Yurinov A.A. Fizika goreniia i vzryva - Combustion, Explosion and Shock Waves, 1978, vol. 14, no. 4, pp. 50-55.
[7] King M.K. Boron Ignition and Combustion in Air-Augmented Rocket Afterburners. Combustion, Science and Technology, 1972, vol. 5, no. 4, pp. 155-164.
[8] Vovchuk Ya.I., Zolotko A.N., Klyachko L.A. Vremya goreniya chastits bora s uchetom vliyaniya diffuzionnogo i kineticheskogo faktorov. Khimicheskaya fizika protsessov goreniya i vzryva. Gorenie kondensirovannykh sistem [Burning time of boron particles with the influence of the diffusion factors and kinetic factors. Chemical physics of combustion and explosion. Combustion of condensed matter]. Chernogolovka, 1977, pp. 90-93.
[9] Beksted M.V. Fizika goreniia i vzryva - Combustion, Explosion and Shock Waves, 2005, vol. 41, no. 5, pp. 55-69.
[10] Yakovleva T.A., Kiro S.A., Kiro A.N. et al. Gorenie chastits diboridov metallov (titana i aliuminiya) v plameni gazovoy gorelki. Makroskopicheskaya kinetika, khimicheskaya i magnitnaya gazovaya dinamika [The Combustion of metal diboride particles (titanium and aluminum) in the gas burner. Macroscopic kinetics, chemical and magnetic gas dynamics]. Tez. dokladov III Vses. shkoly-seminara [Theses of the reports of the Third All-Union School-Seminar]. Tomsk, 1991, part 2, pp. 43-44.