Computing control action parameters for gas jet injection into the expansion section of a nozzle
Authors: Grishin I.M., Andreev E.A., Polyanskiy A.R., Nikitina I.E.
Published in issue: #8(68)/2017
DOI: 10.18698/2308-6033-2017-8-1644
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The study deals with methods of computing control force during rocket engine thrust vectoring by asymmetrically injecting gas into the expansion section of a supersonic nozzle. This technique has a number of advantages, so there exists an interest in the methods that make it possible to reliably estimate the efficiency of using this technique for thrust vectoring, to select geometric and mode parameters in advance and through this, to cut down considerably on the volume of expensive experimental development testing. We compared the results of calculations that used a semi-empirical method and the results of a 3-dimensional computation to experimental data. We studied how the way of supplying the injected gas affects the control force amplitude and the thrust loss through vectoring. For designing power plants that comprise a supersonic controller nozzle, it is possible to use the control action calculation methods considered and the data obtained.
References
[1] Volkov V.T., Yagodnikov D.A. Issledovanie i stendovaya otrabotka raketnykh dvigateley na tverdom toplive [Investigation and development testing of solid propellant rocket engines]. Moscow, BMSTU Publ., 2007, 296 p.
[2] Vinitskiy A.M., Volkov V.T., Volkovitskiy I.G., Kholodilov S.V. Konstruktsiya i otrabotka RDTT [Design and testing of solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1980, 230 p.
[3] Kalugin V.T., Mordvintsev G.G., Popov V.M. Modelirovanie protsessov obtekaniya i upravleniya aerodinamicheskimi kharakteristikami letatelnykh apparatov [Modelling flow and aerodynamic property control processes in aircraft]. Moscow, BMSTU Publ., 2011, 527 p.
[4] Kalugin V.T. Aerogazodinamika organov upravleniya poletom letatelnykh apparatov [Air and gas dynamics in aircraft flight controls]. Moscow, BMSTU Publ., 2004, 686 p.
[5] Volkov K.N., Emelyanov V.N. Modelirovanie krupnykh vikhrey v raschete turbulentnykh techeniy [Modeling large-scale vortices in turbulent flow computations]. Moscow, FIZMATLIT Publ., 2008 125 p.
[6] Andreev A.E., Shmanenkov V.N. Izvestia RAN, Mekhanika Zhidkosti i Gaza - Fluid Dynamics, 1975, no. 2, pp. 15-18.
[7] Belov I.A., Isaev S.A. Modelirovanie turbulentnykh techeniy [Turbulent flow modelling]. St. Petersburg, Ustinov Baltic State Technical University Publ., 2002, 108 p.
[8] Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics. Berlin, Heidelberg, 2002, 426 p.
[9] Antonov R.V. et al. Organy upravleniya vektorom tyagi tverdotoplivnykh raket: raschet, konstruktivnye osobennosti, eksperiment [Thrust vector controls of solid-propellant rockets: calculation, design specifics, experiments]. Moscow-Izhevsk, Regular and Chaotic Dynamics Publ., 2006, 552 p.