Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Ensuring fault tolerance in multicomputer systems for Earth remote sensing with limited hardware resources

Published: 19.05.2022

Authors: Asharina I.V., Grishin V.Yu., Sirenko V.G.

Published in issue: #5(125)/2022

DOI: 10.18698/2308-6033-2022-5-2180

Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering

The paper centers on the problems of developing failure- and fault-tolerant systems for Earth remote sensing satellite constellation control. The study defines the concept of a complex that fail-safely performs a target task, in this case, the task of detecting a target event and monitoring its behavior and development, i.e. monitoring the target event, and gives a hierarchical satellite constellation structure. Findings of the research show that it is necessary to use dynamic redundancy, which can significantly increase the trajectory of self-controlled degradation and, accordingly, the satellite constellation active life. The complexity of the problem lies in ensuring the reliability of the results obtained when a large number of target events, both natural and man-caused, occur. The study introduces an approach to reduce hardware redundancy, i.e. monitor a larger number of events using a lower power satellite constellation, and proves that is possible to use the approach without losing the system reliability.

[1] Asharina I.V., Lobanov A.V. Avtomatika i telemekhanika — Automation and Remote Control, 2014, no. 6, pp. 115–131.
[2] Asharina I.V., Lobanov A.V. Avtomatika i telemekhanika — Automation and Remote Control, 2014, no. 8, pp. 146–156.
[3] Lobanov A.V. Avtomatika i telemekhanika — Automation and Remote Control, 2009, no. 2, pp. 171–189.
[4] Nefedov V.N., Osipova V.A. Kurs diskretnoy matematiki [Discrete Mathematics Course]. Moscow, MAI Publ., 1992, 263 p.
[5] Dianov V.N. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie — Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2007, no. 2, pp. 16–47.
[6] Mikrin E.A., Mikhaylov M.V. Navigatsiнa kosmicheskikh apparatov po izmereniyam ot globalnykh sputnikovykh navigatsionnykh system [Spacecraft navigation by measurements from global satellite navigation systems]. 2nd ed., Moscow, BMSTU Publ., 2018, 345 p.
[7] Lobanov A.V. Avtomatika i telemekhanika — Automation and Remote Control, 2000, no. 12, pp. 138–146.
[8] Avizhenis A. Proceeding of the IEEE, translated into Russ., 1978, vol. 66, no. 10, pp. 5–25.
[9] Pease M., Shostak R., Lamport L. Reaching agreement in the presence of faults. J. ACM., 1980, vol. 27, no. 2, рр. 228–234.
[10] Lamport L., Shostak R., Pease M. The byzantine generals problem. ACM Transactions on Programming Languages and Systems, 1982, vol. 4, no. 3, pp. 382–401.
[11] Vladimirov V.M., Dmitriev D.D., Dubrovskaya O.A., et al. Distantsionnoe zondirovanie Zemli [Remote sensing of the Earth]. Moscow, INFRA-M Publ.; Krasnoyarsk, SibFU Publ., 2021, 196 p.
[12] Asharina I.V. Metod postroeniya otkazoustoychivogo raspredelennogo algoritma sistemnogo vzaimnogo informatsionnogo soglasovaniya v setetsentricheskikh informatsionno-upravlyayuschikh sistemakh [A method for developing a fault-tolerant distributed algorithm for systemic mutual information coordination in network-centric information and control systems]. In: Materialy X Vserossiyskoy nauchno-tekhnicheskoiy konferentsii «Nauchnye chteniya po aviatsii, posvyashchennye pamyati N.E. Zhukovskogo», Moskva, 17–18 aprelya 2014 g. [Proceedings of the X All-Russian Scientific and Technical Conference “Scientific readings on aviation dedicated to the memory of N.E. Zhukovsky”, Moscow, April 17–18, 2014]. Moscow, 2014, pp. 135–138.