Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Model of the signal reflected from passive dipole reflector cloud interference

Published: 06.06.2018

Authors: Zhurakovsky V.N.

Published in issue: #6(78)/2018

DOI: 10.18698/2308-6033-2018-6-1772

Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering

The article describes the model of a radio signal reflected from a dipole reflector cloud. The model is necessary for developing noise-protected algorithms for the on-board radar system operation. The resultant signal is calculated, its characteristics are determined on the computer. Initial data are presented for dipole reflector clouds with a large, medium and short lifetime. A technique for modeling radio signals is developed taking into account the mutual influence of the dipoles and the effect of dipoles shading by the impending dipoles. To reduce the calculation time, the concept of an elementary volume containing a certain number of dipoles is introduced into the methodology. Probabilistic laws for the distribution of the effective scattering surface of elementary volumes are obtained to allow for the random nature of the radio signal reflection from the dipole reflector cloud and the randomness of the amplitude and phase of the reflected signal. The possibility of obtaining signal implementation close to real is shown

[1] Vasin V.A., Vlasov I.B., Dmitriev D.D., et al. Informatsionnye tekhnologii v radiotekhnicheskikh sistemakh [Information technologies in radio systems]. Fedorov I.B., ed. 3rd edition, rev. Moscow, BMSTU Publ., 2011, 846 p.
[2] Vakin S.A., Shustov L.N. Osnovy radioprotivodeystviya i radiotekhnicheskoy razvedki [Fundamentals of defensive radio warfare]. Moscow, Sovetskoe radio Publ., 1968, 448 p.
[3] Paliy A.I. Radioelektronnaya borba [Electronic warfare]. Moscow, Voenizdat Publ., 1989, 350 p.
[4] Klimovich E.S. Radiopomekhi zenitnym kompleksam [Radio interference for air defense systems]. Moscow, Voenizdat Publ., 1973, 104 p.
[5] Pokrovsky M.G., Kropotkin V.G. Model otrazheniya ot sovokupnosti sluchayno raspredelennykh otrazhateley [The model of reflection from a set of randomly distributed reflectors]. In: Trudy MVTU, No. 345 [Proceedings of Moscow Higher Technical School, no. 345]. Moscow, BMHTSh Publ., 1981, pp. 74–83.
[6] Trudy BGTU — Proceedings of Belarusian State Technological University, 2013, no. 6, pp. 115–118.
[7] Dyatko A.A., Kostromitsky S.M., Shumsky P.N. Trudy BGTU. Seriya 3: Fiziko-matematicheskie hauki i informatika — Proceedings of Belarusian State Technological University. Series 3: Physics and Mathematics. Informatics, 2011, no. 6, pp. 97–101.
[8] Shirman Ya.D., ed. Teoreticheskie osnovy radiolokatsii [Theoretical basis of radar]. Moscow, Sovetskoe radio Publ., 1970, 732 p.
[9] Ayzenberg G.Z., ed. Korotkovolnovye antenny [Shortwave antennas]. Moscow, Radio i svyaz Publ., 1985, 536 p.
[10] Ayzenberg G.Z., ed. Antenny UKV. [VHF Antennas.]. In 2 parts. Moscow, Svyaz Publ., 1977, 384 p.
[11] Ufimtsev P.Ya. Metod kraevykh voln v fizicheskoy teorii difraktsii [Method of Edge Waves in the Physical Theory of Diffraction]. Moscow, Sovetskoe radio Publ., 1962, 376 p.
[12] Tikhonov V.I. Statisticheskaya radiotekhnika [Statistical Radio Engineering]. Moscow, Radio i svyaz Publ., 1982, 624 p.
[13] Kobak V.O. Radiolokatsionnye otrazhateli [Radar reflectors]. Moscow, Sovetskoe radio Publ., 1975, 248 p.