Calculation of orbital tether system design parameters for the implementing atmospheric braking device functions
Authors: Ivanov V.A., Kupreev S.A., Ruchinsky V.S.
Published in issue: #6(78)/2018
DOI: 10.18698/2308-6033-2018-6-1770
Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering
The article considers the project of using the orbital tether system as an atmospheric braking device for deorbiting small spacecrafts (including nanosatellites) from low-altitude orbits. The terminal elements of the tether system are two parts of the worked-out spacecraft enhancing the effect of gravitational stabilization of the tether system, and the connecting tether significantly increases the overall aerodynamic drag and plays the role of an aerodynamic brake. The mathematical model of the motion of bound objects in the central Newtonian terrestrial gravitational field is developed, taking into account the aerodynamic drag force of the atmosphere upper layers and the mass of the tether. The forms of equilibrium of the cosmic tether in the equilibrium stationary regime of the bundle motion are determined. A methodology for calculating the basic design parameters of a tether system deployed on the basis of a nanosatellite and performing the functions of an atmospheric braking device is developed. The analysis of the possibility of implementing the function of the atmospheric braking device by the tether system on elliptical orbits is performed. The recommendations on the design of tether systems performing the functions of atmospheric braking devices are formulated
References
[1] Beletsky V.V., Levin E.M. Dynamics of Space Tether Systems. In: Advances in the Astronautical Sciences. San Diego, CA, USA, Univelt Inc. Publ., 1993.
[2] Ivanov V.A., Kupreev S.A., Ruchinsky V.S. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 5. DOI: 10.18698/2308-6033-2018-5-1764
[3] Danilenko A.V., Yolkin K.A., Lyagushina S.Ts. Proekt programmy poetapnogo osvoeniya perspektivnoy kosmicheskoy tekhnologii — orbitalnykh trosovykh system [Draft program for the phased development of advanced space technology — orbital tether systems]. Vosmoy mezhdunarodnyy aerokosmicheskiy kongress IAC’15. Moskva, 28 avgusta 2015 g. Plenarnye i izbrannye doklady [Eighth International Aerospace Congress IAC
[4] Alpatov A.P., Beletsky V.V., Drakovsky V.I., Zakrzhevsky A.E., Pirozhenko A.V., Truger G., Khoroshilov V.S. Dinamika kosmicheskikh systems s trosovymi i sharnirnymi soedineniyami [Dynamics of space systems with tether and hinged connections]. Izhevsk, NITs “Regulyarnaya i khaoticheskaya dinamika” Publ., 2007, 560 p.
[5] Beletsky V.V., Levin E.M. Dinamika kosmicheskikh trosovykh system [Dyna- mics of Space Tether Systems]. Moscow, Nauka Publ., 1990, 336 p.
[6] Shcherbakov V.I. Orbitalnye manevry kosmicheskoy trosovoy sistemy [Orbital maneuvers of the space cable system]. St. Petersburg, A.F. Mozhaysky Military-Space Academy Publ., 2010, 185 p.
[7] Cosmo M.L., Lorenzini E.C. Tethers in Space Handbook. Cambridge, Smithso-nian Astrophysical Observatory, 1997, 274 p.
[8] Levin E.M. Dynamic Analysis of Space Tether Missions. In: Advances in the Astronautical Sciences, vol. 126. Washington, DC, USA, American Astronautical Society Publ., 2007.
[9] Chen Y., Huang R., Ren X., He L., He Y. History of the Tether Concept and Tether Missions: A Review. In: ISRN Astronomy and Astrophysics, vol. 2013, pp. 1–7.
[10] Misra A. Dynamics and control of Tethered Satellite Systems. Acta Astronaut, 2008, vol. 63, iss. 11–12, pp. 1169–1177. URL: http://dx.doi.org/10.1016/j.actaastro.2008.06.020
[11] Aslanov V.S., Ledkov A.S. Dynamics of Tethered Satellite Systems. Cambridge, Woodhead Publ., 2012, 331 p.
[12] Kumar K.D. Review on Dynamics and Control of Nonelectrodynamic Tethered Satellite Systems. Journal of Spacecraft and Rockets, 2006, vol. 43, no. 4, pp. 705–720. URL: http://dx.doi.org/10.2514/1.5479
[13] Zimmermann F., Schttle U.M., Messerschmid E. Optimization of the Tetherassisted return Mission of a Guided Reentry Capsule. Aerospace Science and Technology, 2005, vol. 9, no. 8, pp. 713–721. URL: http://dx.doi.org/10.1016/j.ast.2005.09.002
[14] Williams P. Optimal Deployment/retrieval of Tethered Satellites. Journal of Spacecraft and Rockets, 2008, vol. 45, no. 2, pp. 324–343. URL: http://dx.doi.org/10.2514/1.31804
[15] Kruijff M. Tethers in Space: A Propellantless Propulsion In-orbit Demonstration. Delft University of Technology, The Netherlands, 2011, 432 p.
[16] Ivanov V.A., Kupreev S.A., Ruchinsky V.S. Orbitalnoe funktsionirovanie svyazannykh kosmicheskikh obyektov [Orbital functioning of the tethered space objects]. Moscow, INFRA-M Publ., 2014, 320 p.
[17] Ivanov V.A., Kupreev S.A., Ruchinsky V.S. Kosmicheskie trosovye sistemy [Space tether systems]. Moscow, Alfa-M Publ., 2014, 208 p.
[18] Pearson J., Carroll J., Levin E., Oldson J. EDDE: Electrodynamic Debris Eliminator for Active Debris Removal. Acta Astronautica, 2012, vol. 73, pp. 100–108.
[19] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka [Qualitative theory of the second order dynamic systems]. Moscow, Nauka Publ., 1960, 568 p.
[20] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Teoriya bifurkatsiy dinamicheskikh sistem na ploskosti [The theory of bifurcations of dynamic systems on the plane]. Moscow, Nauka Publ., 1967, 488 p.