Selection of the method for joining composite structural elements in the tail fuselage of a light aircraft
Authors: Tun Lin Htet, Prosuntsov P.V.
Published in issue: #12(156)/2024
DOI: 10.18698/2308-6033-2024-12-2411
Category: Aviation and Rocket-Space Engineering | Chapter: Strength and Thermal Conditions of Aircraft
The paper examines various methods for connecting components made of polymer composite materials, focusing on adhesive and combined adhesive-mechanical joints. The primary focus is on the comparative analysis of these connection types in terms of their effectiveness, manufacturability, and impact on the structural strength and overall weight of the assembly. Aerodynamic and mass-inertial forces acting on the aircraft in various design load cases were considered. The stress-strain state of the structural elements (ribs) was analyzed using the ANSYS Workbench. Based on this analysis, a rational method for connection of composite structural components is proposed, which provides weight reduction of the structure while maintaining sufficient strength and reliability of the assembled elements. The strength evaluation of structural elements was conducted with consideration of their safety factor according to the failure criterion for composite materials.
EDN AIZQCC
References
[1] Tooren M., Kasapoglou C., Bersee H. Composite materials, composite structures, composite systems. The Aeronautical Journal, 2011, vol. 115 (1174). https://doi.org/10.107/S0001924000006527
[2] Zagainov G.I., Lozino-Lozinsky G.E. Composite materials in aerospace design. Chapamn & Hall, 1996, 460 p.
[3] Bulanov I.M., Vorobey V.V. Tekhnologiya raketnykh i aerokosmicheskikh konstruktsiy iz kompozitsionnykh materialov [Technology of rocket and aerospace structures made of the composite materials]. Moscow, BMSTU Publ., 1998, 516 p.
[4] Vashukov Yu.A. Osobennosti sborki detaley iz kompozitsionnykh materialov v konstruktsiyakh letatel’nykh apparatov [Features of the composite material parts assembly in the aircraft structures]. Samara, Samara State Aerospace University Publ., 2007, 68 p.
[5] Banea M.D., Silva L.F.M. Adhesively bonded joints in composite materials: an overview. Proc. IMechE. Part L: J. Materials: Design and Applications, 2009, vol. 223. https://doi.org/10.1243/14644207JMDA219
[6] Siddique A., Iqbal Z., Nawab Y., Shaker K. A review of joining techniques for thermoplastic composite materials. Journal of Thermoplastic Composite Materials, 2023, vol. 36 (8), pp. 3417–3454. https://doi.org/10.1177/08927057221096662
[7] Diamond DA 62. Available at: https://www.diamondaircraft.com/en/flight-school-solution/concept/ (accessed January 11, 2024).
[8] Tun Lin Htet, Prosuntsov P.V. Optimizatsiya formy shpangoutov i uglov ukladki polimernogo kompozitsionnogo materiala silovogo nabora khvostovoy chasti legkogo samoleta [Design optimization of shape and layup sequence of polymer composite load bearing elements of light aircraft]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2023, no. 2 (755). pp. 97–107. https://doi.org/10.18698/0536-1044-2021-9-97-107
[9] Tun Lin Htet, Prosuntsov P.V. Metodika proyektirovaniya kompozitnogo silovogo nabora khvostovoy chasti fyuzelyazha [Method of designing the composite load-bearing elements of the fuselage tail section]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2023, no. 2 (755). pp. 84–95. https://doi.org/10.18698/0536-1044-2023-2-84-95
[10] Tun Lin Htet, Prosuntsov P.V. Comparative analysis of methods for calculating the physico-mechanical characteristics of multi-layered composite materials. E3S Web of Conferences, 2023, vol. 376, no. 01050. https://doi.org/10.1051/e3sconf/202337601050
[11] Noeske M. Introduction to recent advances in quality assessment for adhesive bonding technology. Adhesive bonding of aircraft composite structures. Springer, 2021, 364 p. https://doi.org/10.1007/978-3-319-92810-4
[12] Martynov G.B., Monastyreva D.E., Astafieva N.S. Kleyevoye soedinenie kompozitsionnykh materialov v usloviyakh uskorennogo klimaticheskogo stareniya [Adhesive compound of composite materials in conditions of accelerated climatic aging]. Vestnik MGSU, 2021, vol. 16, no. 4. pp. 429–437. https://doi.org/10.22227/1997-0935.2021.4.429-437.
[13] Biszczanik A., Talaska K., Wilczynski D. Analysis of the adhesive spread and the thickness of the adhesive bonded joint depending on the compressive force applied to bonded materials with different surface structure. International Journal of Adhesion and Adhesives, 2022, vol. 114 (3). https://doi.org/10.1016/j.ijadhadh.2021.103081.
[14] El-Sisi A., Hassanin A., Alsharari F., Galustanian N., Salim H. Failure behavior of composite bolted joints: Review. Advances in Civil Engineering, 2022, vol. 3, pp. 1061–1076. https://doi.org/10.3390/civileng3040060
[15] Glass reinforced plastic (GRP) and Aluminium bolted T-joints. Available at: https://www.lusas.com/case/composite/tjoints.html (accessed March 9, 2023).
[16] Martynov G.V., Monastyreva D.E., Makarov A.I., Morina E.A., Daurov Z.S., Tikhohov R.S. Boltovyye soyedineniya kompozitsionnykh materialov v usloviyakh klimaticheskogo stareniya [Bolt attachments of composite materials under conditions of climate ageing]. Vestnik MGSU, 2019, vol. 14, no. 7, pp. 852–861. https://doi.org/10.22227/1997-0935.2019.7.852-861
[17] Semenova I., Polyakov A., Gareev A., Makarov V., Kazakov I., Pesin M. Machinability features of TI-6Al-4V alloy with ultrafine-grained structure. Metals, 2023, vol. 13 (10), no. 1721. https://doi.org/10.3390/met13101721
[18] Bolted connections in ANSYS Workbench: Part 1. Available at: https://www.endeavos.com/bolted-connections-ansys-workbench-part-1/ (accessed January12, 2023).
[19] Grinevich D.V., Yakovlev N.O., Slavin A.V. Kriterii razrusheniya polimernykh kompozitsionnykh materialov (obzor). [The criteria of the failure of polymer matrix composites (review)]. Trudy VIAM, 2019, no. 7 (79), pp. 92–111. https://doi.org/10.18577/2307-6046-2019-0-7-92-111