Certain design and technological features in rational design of the thin-walled load-bearing panels made of laminated composite influencing their load capacity
Authors: Terekhova E.S.
Published in issue: #10(154)/2024
DOI: 10.18698/2308-6033-2024-10-2393
Category: Aviation and Rocket-Space Engineering | Chapter: Strength and Thermal Conditions of Aircraft
The problem of designing a thin-walled panel made of layered polymer composite material with minimum weight and ensuring its strength and stability is characterized by increased complexity, since stability strongly depends on the bending rigidity determined not only by the layers percentage in laying, but also by their position in thickness. Considering this circumstance, an algorithm for selecting the rational parameters (ASRP) was developed for the thin-walled load-bearing panels made of the layered composite according to the minimum weight, strength and stability requirements. To improve the algorithm efficiency, analytical solutions were obtained for the problems determining critical load in loss of stability of both unreinforced and discretely reinforced with stringers the composite panels under combined loading. Analytical solutions were verified using the finite element method. This article objective is to validate computation models of stringer panel samples developed using the ASRP and to study the technological factors influence on their load-bearing capacity. Samples of the stringer panels were developed for the ASRP validation. The samples were tested for stability. Satisfactory agreement was obtained between the critical loads realized in the experiments and using the finite element analysis. To study the influence of technological factors on the bearing capacity, samples of the composite panels with different numbers of layers were manufactured using the autoclave and vacuum molding. Difference was identified between the average expected passport sample thicknesses and the thicknesses of the manufactured samples.
EDN GJSRIC
References
[1] Mitrofanov O.V. Prikladnoe proektirovanie panelei kryla minimalnogo vesa iz kompozitnykh materialov s uchetom zakriticheskogo povedeniya obshivki [Composite material wing panel of minimal mass design considering supercritical skin response]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 2002, vol. 9, no. 1, pp. 34–41.
[2] Dudchenko A.A., Kanchaya Rojas Raul Anjel. Ratsionalnoe proektirovanie konstruktsii otseka fyuzelyazha iz kompozitsionnykh materialov [Rational design of the fuselage section structure made of composite materials]. Konstruktsii iz kompozitsionnykh materialov — Composite Materials Constructions, 2011, no. 2, pp. 21–34.
[3] Balunov K.A., Ishmuratov F.Z., Tuktarov S.A., Uskov V.M., Chedrik V.V. Mnogodisciplinarnye aspekty v issledovaniyakh sinteza i optimizatsii konstruktivno-silovykh skhem letatelnykh apparatov [Multidisciplinary aspects in research of synthesis and optimization of the structural-force schemes of an aircraft]. In: Sbornik statey nauchno-tekhnicheskoy konferentsii “Prochnost konstruktsiy letatelnykh apparatov”, Zhukovsky, 8–9 dekabrya 2016 goda [Collection of articles from the scientific and technical conference “Strength of the aircraft structures”, Zhukovsky, December 8–9, 2016]. Moscow, TsAGI Publ., 2017, pp. 29–36.
[4] Grishchenko S.V. Fenomenologicheskaya metodika podbora ratsionalnykh parametrov ukladki sloev pri proektirovanii paneley aviatsionnykh konstruktsiy iz sloistykh polimernykh kompozitsionnykh materialov [The phenomenological method of selection of rational parameters of layers laying for the design of laying panela of aircraft constructions made of laminated polymeric composite materials]. Konstruktsii iz kompozitsionnykh materialov — Composite Materials Constructions, 2019, no. 4, pp. 45–49.
[5] Khaziev A.R. Optimalnoe proektirovanie kompozitnykh elementov konstruktsiy po usloviyam prochnosti, zhestkosti i ustojchivosti. Dis. …kand. tekhn. nauk [Optimal design of composite structural elements based on strength, rigidity and stability conditions. Diss. … Cand. Sc. (Eng.)]. Moscow, 2009, 143 p.
[6] Kireev V.A., Kazakov I.A. Vybor ratsionalnykh parametrov kompozitnykh paneley kryla [Selection of rational parameters of the composite wing panels]. Uchenye zapiski TsAGI — TsAGI Science Journal, 2023, no. 3, vol. LIV, pp. 89–100.
[7] Badrukhin Yu.I., Terekhova E.S. Ratsionalnoe proektirovanie tonkostennykh nesushchikh paneley iz sloistogo kompozita pri kombinirovannom nagruzhenii [Rational design of thin-walled load-bearing panels made of laminated composite under the combined loading]. Vestnik Moskovskogo aviatsionnogo instituta — MAI Aerospace Journal, 2023, vol. 30, no. 4, pp. 130–139.
[8] Badrukhin Yu.I., Terekhova E.S. Programmnoe obespechenie po vyboru optimalnoy ukladki monosloev v sloistykh kompozitnykh panelyakh po usloviyam prochnosti i ustoychivosti [Software for selecting the optimal laying of monolayers in layered composite panels based on the strength and stability conditions]. Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM no. 2023680522. Zayavka no. 2023669792. Data gosudarstvennoy registratsii v Reestre programm dlya EVM 02.10.2023 [Certificate of state registration of computer program no. 2023680522. Application no. 2023669792. Date of state registration in the Register of computer programs October 2, 2023].
[9] Vasilevich Yu.V., Gorelyi K.A. Mekhanika prepregov — raschet izdeliy iz armirovannykh kompozitsionnykh materialov [Prepreg mechanics – computation of products from reinforced composite materials]. In 2 parts, part 1. Minsk, BNTU Publ., 2016, 295 p.
[10] Obvertkin I.V. Issledovanie obyemnoy khimicheskoy usadki modifitsirovannykh epoksidnykh smol [Study of volumetric chemical shrinkage of modified epoxy resins]. Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta — Proceedings of the Kabardino-Balkarian State University, 2022, vol. 12, no. 4, pp. 113–117.
[11] Varushkin E.M. Issledovanie temperaturnykh ostatochnykh napryazheniy i deformatsii v tolstostennykh namotochnykh izdeliyakh iz armirovannykh plastikov [Study of thermal residual stresses and deformations in thick-walled wound products made of reinforced plastics]. Mekhanika polimerov — Polymer Mechanics, 1971, no. 6, pp. 1040–1046.
[12] Vasilevich Yu.V., Gorelyi K.A., Sakhonenko S.V., Ivanov S.N. Vliyanie khimicheskoy usadki svyazuyushchego v protsesse otverzhdeniya na obrazovanie ostatochnykh napryazheniy v tsilindricheskikh obolochkakh iz kompozita [The influence of chemical shrinkage of the binder during curing on the formation of residual stresses in the cylindrical composite shells]. In: Teoreticheskaya i prikladnaya mekhanika: mezhdunarodnyi nauchno-tekhnicheskiy sbornik, vyp. 31 [Theoretical and Applied Mechanics: International Scientific and Technical Collection, iss. 31]. Minsk, BNTU Publ., 2016, pp. 67–72.
[13] Korolkov V.I., Nekravtsev E.N., Safonov K.S., Ogurtsov P.S., Oganesov V.A., Popov I.S., Samokhvalov V.V. Issledovanie protsessov ustraneniya korobleniya aviatsionnykh izdeliy iz polimernykh kompozitsionnykh materialov, poluchennykh metodom vysokotemperaturnogo formovaniya [Research of the processes of eliminating warpage of aviation products vade of polymer-composite materials obtained by high-temperature molding]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2021, no. 10 (739), pp. 84–94. https://dpi.org/10.18698/0536-1044-2021-10-84-94
[14] Khaskov M.A., Safronov E.V. Modelirovanie protsessov otverzhdeniya termoreaktivnykh matrits na primere slozhnoprofilnogo obraztsa [The optimization of thermosetting matrixes curing schedule on the example of a complex shape sample]. Trudy VIAM — Proceedings of VIAM, 2019, no. 12 (84), pp. 46–54. https://doi.org/10.18577/2307-6046-2019-0-12-46-54
[15] Sokolov V.V., Antipov P.Yu., Golishchev O.A., Dolinskiy S.V. Vliyanie kolichestva sloev armiruyushchego materiala na tolshchinu i vesovye kharakteristiki ugleplastikovykh detaley, poluchaemykh metodom vakuumnoy infuzii [Effect of number of layers of the reinforcing material on the thickness and weight characteristics of carbon fiber parts produced by vacuum infusion]. Plasticheskie massy, 2021, no. 1–2, pp. 62–64. https://doi.org/10.35164/0554-2901-2021-1-2-62-64