Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Determination of thickness of the smooth metal panels with limitations in stability and static strength at the postbuckling behaviour taking into account the membrane and bending stresses

Published: 03.06.2024

Authors: Mitrofanov O.V., Toropylina E.Yu.

Published in issue: #6(150)/2024

DOI: 10.18698/2308-6033-2024-6-2365

Category: Aviation and Rocket-Space Engineering | Chapter: Strength and Thermal Conditions of Aircraft

Research objects in the paper include the upper metal load-bearing reinforced panels of the medium-duty aircraft wing caisson, which are loaded with the compressive and tangential forces. Stability loss in the skins exposed to loads close to the operational level is considered acceptable. In this case, the skins are classified as the medium-thick plates. Analysis of their geometrically nonlinear behavior should take into account the membrane and bending stresses. The paper proposes applied methods (algorithms) in determining the minimum thickness of skins loaded with compressive, tangential and combined forces with the acceptable initial stage of the geometrically nonlinear behavior. These methods (algorithms) are based on introducing analytical solutions to the geometrically nonlinear problems obtained by the Bubnov — Galerkin method. The paper formulates issues of the general methodology (algorithm) to determine the metal panel minimum thickness taking into account the membrane and bending stresses arising in the postbuckling state. Besides, it presents specifics of the applied methods (algorithms) in the panels’ design taking into consideration the two loading levels. In this case, it becomes necessary in the postbuckling state to ensure stability at the first loading level and strength at the second.

EDN UHNVND


References
[1] Volmir A.S. Gibkie plastiny i obolochki [Flexible plates and shells]. Moscow, Gostekhizdat Publ., 1956, 419 р.
[2] Banichuk N.V., Biryuk V.I., Seyranyan A.P. Metody optimizatsii aviatsionnykh konstruktsiy [Methods of optimizing the aircraft structures]. Moscow, Mashinostroenie Publ., 1989, 296 p.
[3] Avdonin A.S., Figurovsky V.I. Raschet na prochnost letatelnykh apparatov [Calculation of the aircraft strength]. Moscow, Mashinostroenie Publ., 1985, 440 p.
[4] Lizin V.T., Pyatkin V.A. Proektirovanie tonkostennykh konstruktsiy [Design of the thin-walled structures]. Moscow, Mashinostroenie Publ., 1994, 384 p.
[5] Belous A.A., Pospelov I.I. Metod rascheta na ustoychivost paneli kryla malogo udlineniya [Calculation method for stability of the small elongation wing panel]. Trudy TsAGI, iss. 1783. Moscow, 1976, 36 p.
[6] Andrienko V.M., Pospelov I.I. Optimalnoe proektirovanie paneley kessona kryla po usloviyam prochnosti i zhestkosti [Optimal design of the wing caisson panels according to strength and stability conditions]. Proektirovanie i raschet na prochnost aviatsionnykh konstruktsiy [Design and calculation of strength of the aircraft structures]. Iss. 2623. Moscow, 1996, TsAGI Publ., pp. 68–75.
[7] Zamula G.N., Ierusalimskiy K.M. Metodika redutsirovaniya poteryavshey ustoychivost obshivki pri kombinirovannom nagruzhenii [Methodology of reducing a shell with lost stability under combined loading]. Uchenye zapiski TsAGI — TsAGI Science Journal, 1989, vol. 20, no. 6, pp. 71–82.
[8] Dzyuba A.S., Dudakov Yu.I., Levchenko E.A., Limonin M.V., Tsoi S.V., Yashutin A.G. Metodologiya primeneniya sovremennykh raschetnykh metodov k otrabotke staticheskoy prochnosti aviakonstruktsiy [Methodology of applying modern computational methods to testing the static strength of the aircraft structures]. Prochnost konstruktsiy letatelnykh apparatov (trudy konferentsii “Prochnost konstruktsiy letatelnykh apparatov” 31 maya – 1 iyunya 2018 g., g. Zhukovsky) [Structural strength of the aircraft (proceedings of the conference “Structural strength of the aircraft”, May 31 − June 1, 2018, Zhukovsky)]. Trudy TsAGI, iss. 2782. Moscow, 2018, p. 7.
[9] Zichenkov M.Ch., Dzyuba A.S., Dubinsky S.V., Timonin M.V., Paryshev S.E., Pankov A.V. Razvitie metodov analiza i issledovaniya prochnosti aviatsionnykh konstruktsiy [Development of methods of analysis and research of the aircraft structures strength]. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet” — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2018, no. 11, pp. 87–105.
[10] Nikiforov A.K., Chedrik V.V. Primenenie metoda nelineynogo programmirovaniya v zadache optimizatsii podkreplennykh paneley po usloviyam prochnosti i ustoychivosti [Application of the nonlinear programming method in the problem of optimizing the reinforced panels according to strength and stability conditions]. Proektirovanie i raschet na prochnost aviatsionnykh konstruktsiy [Design and calculation of strength of the aircraft structures]. Iss. 2628. Moscow, TsAGI Publ., 1997, pp. 47–53.
[11] Merkulov I.E., Endogur A.I. Optimizatsiya svarnykh konstruktsiy sverkhzvukovykh samoletov s uchetom konstruknivno-tekhnologicheskikh skhem [Optimization of welded structures of the supersonic aircraft taking into account the structural and technological schemes]. Aviatsiya i kosmonavtika – 2017: Tezisy. Moskva, 20–24 noyabrya 2017 g. [Aviation and Cosmonautics – 2017: Abstracts, Moscow, November 20–24, 2017]. Moscow, 2017, MAI Publ., pp. 48–49.
[12] Bolshykh A.A., Eremin V.P. Primenenie metoda parametricheskoy optimizatsii v zadachyakh proektirovaniya passazhirskikh avialaynerov [Method of parametric optimization in the problems of passenger airliner design]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 10 (106), p. 3. https://doi.org/10.18698/2308-6033-2020-10-2022
[13] Selyugin S.V., Chekhov V.V. Raschet ratsionalnykh parametrov fizicheski nelineynykh konstruktsiy [Calculation of rational parameters of the physically nonlinear structures]. Proektirovanie i raschet na prochnost aviatsionnykh konstruktsiy [Design and calculation of strength of the aircraft structures]. Iss. 2632. Moscow, 1998, TsAGI Publ., pp. 85–95.
[14] Chekhov V.V. Teoreticheskaya otsenka vliyaniya plastichnosti i bolshikh deformatsii na svoystva optimalnogo poleta na primere nagruzheniya trekhsterzhnevoy fermy [Theoretical assessment of the plasticity and large deformations influence on the properties of optimal design using the example of loading a three-rod truss]. Prochnost konstruktsiy letatelnykh apparatov (trudy konferentsii “Prochnost konstruktsiy letatelnykh apparatov” 31 maya – 1 iyunya 2018 g., g. Zhukovsky) [Structural strength of the aircraft (proceedings of the conference “Structural strength of the aircraft”, May 31 − June 1, 2018, Zhukovsky)]. Trudy TsAGI, iss. 2782. Moscow, 2018, pp. 212–213.
[15] Mitrofanov O.V. Proektirovanie paneley kryla minimalnoy massy iz kompozitnykh materialov s uchetom zakriticheskogo povedeniya obshivki [Composite material wing panel of minimum mass design considering supercritical skin response]. Vestnik MAI — Aerospace MAI Journal, 2022, vol. 9, no. 1, pp. 34–41.
[16] Mitrofanov O.V. Proektirovanie nesushchikh paneley aviatsionnykh konstruktsiy po zakriticheskomu sostoyaniyu [Designing load-bearing panels of the aircraft structures for postbuckling state]. Moscow, MAI Publ., 2020, 160 p.
[17] Mitrofanov O.V., Osman Mazen. Proektirovanie gladkikh metallicheskikh paneley pri obespechenii ustoychivosti i prochnosti pri zakriticheskomu povedenii [Designing of smooth composite panels providing stability and strength at postbuckling behavior]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 2022, vol. 29, no. 1, pp. 36–47. https://doi.org/10.34759/vst-2022-1-36-47
[18] Balabukh L.I. Ustoychivost fanernykh plastinok [Stability of plywood plates]. Tekhnika vozdushnogo flota — Air Fleet Technology, 1937, no. 9, pp. 19–38.