Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Method for calculating axisymmetric oscillations of the shells of revolution with liquid according to the differential model

Published: 15.02.2024

Authors: Nguyen C.M., Shelevaya D.R., Krasnorutsky D.A.

Published in issue: #2(146)/2024

DOI: 10.18698/2308-6033-2024-2-2338

Category: Aviation and Rocket-Space Engineering | Chapter: Strength and Thermal Conditions of Aircraft

The paper proposes a technique for calculating dynamic deformation of the axisymmetric orthotropic shells of revolution shells based on solving differential equations by the finite difference method. In particular, it uses the polyharmonic radial basis functions to solve the adjoin problem of the tank insignificant oscillations with the ideal incompressible fluid generating the local finite difference weight coefficients on an arbitrary stencil of the computational domain nodal points. The axisymmetric shell meridian deformation is described by a system of six differential motion equations obtained on the basis of general spatial equations for resolving functions in the global coordinate system. To describe rotations, the final rotation vector (Eulerian vector) is used. Equations do not contain the initial curvature; they describe large rotations, displacements and deformations and take into account thinning/thickening and influence of the transverse shear in the thick shell deformation. The proposed technique is implemented in the proprietary DARSYS software package. Oscillation frequencies of the liquid tanks are calculated using the proposed technique and are compared with frequencies obtained by the other methods. To analyze convergence, the ANSYS system is used, as well as a program that implements the finite and boundary element methods.


[1] Kolesnikov K.S., Rybak S.A., Samoylov E.A. Dinamika toplivnykh sistem ZhRD [Dynamics of the rocket engine liquid fuel systems]. Moscow, Mashinostroenie Publ., 1975, 172 p.
[2] Wei Liu, Chang Xiao, Hao Zhou, Chenyan Wang. Experimental investigation of liquid-tank interaction effects on full containment LNG storage tanks through shaking table tests. Thin-Walled Structures, 2023.
[3] Gribkov V.A., Adamenko R.A. Dvumernaya model zhidkosti dlya rascheta sobstvennykh chastot kolebaniy osesimmetrichnykh gidroobolochechnykh sistem [Two-dimensional fluid model for calculating the natural vibration frequencies of axially symmetric hydro-shell systems]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 3 (63), p. 5.
[4] Shupikov A.N., Misyura S.Yu., Yareshchenko V.G. Chislennoe i eksperimentalnoe issledovanie gidroupruigikh kolebaniy obolochek [A numerical and experimental study of hydroelastic shell vibrations]. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy — Eastern-European Journal of Enterprise Technologies, 2014, vol. 6, no. 7 (72), pp. 8–12.
[5] Jhung M.J., Jo J.C., Jeong K.H. Modal analysis of conical shell filled with fluid. J. Mech. Sci. Technol., 2006, vol. 20, no. 11, pp. 1848–1862.
[6] Goncharov D.A., Pozhalostin A.A., Kokushkin V.V. Modelirovanie osesimmetrichnykh kolebaniy uprugogo baka s zhidkostyu s uchetom sil poverkhnostnogo natyazheniya posredstvom mekhanicheskogo analoga [The mechanical of the small axisymmetric oscillations of the with the surface tension forces in elastic tank]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2015, no. 6, pp. 372–383.
[7] Phan Hoang Nam, Fabrizio Paolacci. Fluid-structure interaction problems: An application to anchored and unanchored steel storage tanks subject to seismic loadings. arXiv: Numerical Analysis, 2018, n. pag.
[8] Shklyarchuk F.N., Rei Juhnbum F. Ray Zhongbum. Raschet neosesimmetrichnykh kolebaniy obolochek vrashcheniya s zhidkostyu metodom konechnykh elementov [Calculation of non-axisymmetric vibrations of shells of revolution with liquid by finite element method]. Vestnik MAI – Aerospace MAI Journal, 2013, vol. 20, no. 2, pp. 49–58.
[9] Shklyarchuk F.N. Raschet kolebaniy obolochek vrashcheniya s zhidkostyu metodom konechnykh elementov [Calculation of oscillations of shells of revolution with liquid using the finite element method]. Problemy mashinostroeniya i nadezhnosti mashin — Journal of Machinery Manufacture and Reliability, 2015, no. 1, pp. 17–29.
[10] Mokeev V.V. Issledovanie dinamiki konstruktsiy s zhidkostyu i gazom s pomoshchyu metoda konechnykh elementov [Investigation of the dynamics of structures with liquid or gas by the finite element method]. Izv. RAN. Mekhanika tverdogo tela — Mechanics of Solids. A Journal of Russian Academy of Sciences, 1998, no. 6, pp. 166–174.
[11] Yi Lu, Ji Jing. Modal analysis on anchored tank considering shell and fluid coupling. Advanced materials research, 2012, vol. 549, pp. 903–907. Crossref,
[12] Dubois T.T., de Rouvray A.L. An improved fluid superelement for the coupled solid-fluid-surface wave dynamic interaction problem. Earthquake Eng. Struct. Dynam., 1978, vol. 6, no. 3, pp. 235–245.
[13] Gnitko V.I., Degtyarev K.G., Kononenko E.S., Tonkonozhenko A.M. Sravnenie metodov konechnykh i granichnykh elementov v zadachyakh o kolebaniyakh sostavnoy obolochka vrashcheniya s zhidkostyu [Comparison of finite and boundary element methods in problems of vibrations of a composite shell of revolution with the fluid]. Visnik Kharkivskogo natsionalnogo universitetu imeni V.N. Karazina — Bulletin of V.N. Karazin Kharkiv National University, 2019, iss. 42, pp. 38–45.
[14] Levin V.E. Metod konechnykh i granichnykh elementov v dinamike konstruktsiy letatelnykh apparatov: 05.07.03 “Prochnost i teplovye rezhimy letatelnykh apparatov. Dis. … d-ra tekhn. nauk [Finite and boundary element method in the dynamics of aircraft structures: 05.07.03 “Strength and thermal conditions of aircraft”. Diss. … Dr. Sc. (Eng.)]. Novosibirsk, Novosibirsk State Technical University, 2001, 341 p.
[15] Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Sobstvennye kolebaniya usechennykh konicheskikh obolochek, soderzhashchikh zhidkost [Natural vibrations of truncated conical shells containing fluid]. Prikladnaya matematika i mekhanika — Journal of Applied Mathematics and Mechanics, 2022, vol. 86, no. 4, pp. 505–526.
[16] Nurul Izyan M.D., Viswanathan K.K., Aziz Z.A., et al. Free vibration of layered truncated conical shells filled with quiescent fluid using spline method. Compos. Struct., 2017, vol. 163, pp. 385–398.
[17] Mohammadi N., Aghdam M.M., Asadi H. Instability analysis of conical shells filled with quiescent fluid using generalized differential quadrature method. In: The 26th Annual Int. Conference of Iranian Society of Mechanical Engineers-ISME2018, April 24–26, 2018. School of Mechanical Engineering, Semnan Univ., Semnan, Iran, ISME 2018-1216.
[18] Flyer N., Fornberg B., Bayona V., Barnett G.A. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. Journal of Computational Physics, 2016, vol. 321, pp. 21–38.
[19] Shankar V., Wright G.B., Kirby R.M., Fogelson A.L. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces. J Sci Comput., 2016 Jun 1, vol. 63 (3), pp. 745–768.
[20] Chein-Shan Liu, Dongjie Liu. Optimal shape parameter in the MQ-RBF by minimizing an energy gap functional. Applied Mathematics Letters, 2018, vol. 86, pp. 157–165.
[21] Rahimi A., Shivanian C., Abbasbandy S. Analysis of new RBF-FD weights, calculated based on inverse quadratic functions. J. Math., 2022.
[22] Álvarez D., González-Rodríguez P., Kindelan M. A local radial basis function method for the Laplace–Beltrami operator. J Sci Comput, 2021, no. 86, p. 28.
[23] Tominec I., Larsson E., Heryudono A. A Least Squares Radial Basis Function Finite Difference Method with Improved Stability Properties. SIAM Journal on Scientific Computing, 2021, vol. 43, no. 2, pp. A1441–A1471. https://doi/org/10.1137/20M1320079
[24] Kalani Rubasinghe, Guangming Yao, Jing Niu, Gantumur Tsogtgerel. Polyharmonic splines interpolation on scattered data in 2D and 3D with applications. Engineering Analysis with Boundary Elements, 2023, vol. 156, pp. 240–250. https://doi/org/10.1016/j.enganabound.2023.08.001
[25] Velikanov P.G., Artyukhin Yu.P. Obshchaya teoriya ortotropnykh obolochek. Chast I [General theory of orthotropic shells. Part I]. Vestnik Samarskogo universiteta. Estestvennonauchn. Seriya — Vestnik of Samara University. Natural Science Series, 2022, vol. 28, no. 1-2, pp. 46–54.
[26] Velikanov P.G., Artyukhin Yu.P. Obshchaya teoriya ortotropnykh obolochek. Chast II [General theory of orthotropic shells. Part II]. Vestnik Samarskogo universiteta. Estestvennonauchn. Seriya — Vestnik of Samara University. Natural Science Series, 2022, vol. 28, no. 3-4, pp. 40–52.
[27] Jie Hou, Ying Li, Shihui Ying. Iterative optimization method for determining optimal shape parameter in RBF-FD method. Applied Mathematics Letters, 2023, vol. 145, art. ID 108736.
[28] Fornberg B., Flyer N. Fast generation of 2D node distributions for mesh-free PDE discretizations. Computers & Mathematics with Applications, 2015, vol. 69, iss. 7, pp. 531–544.
[29] Shankar V. The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF-FD. J Comput Phys, 2017, vol. 342, pp. 211–228.
[30] Krasnorutskiy D.A., Lakiza P.A., Shelevaya D.R. Programmnyi kompleks dlya modelirovaniya mekhaniki sistemy tonkikh uprugikh sterzhney [A software package for modeling the mechanics of a system of thin elastic rods]. In: Kraevye zadachi i matematicheskoe modelirovanie: temat. sb. nauch. st. [Boundary value problems and mathematical modeling: thematic collection of scientific articles]. Novokuznetsk, KGPI KemGU Publ., 2023, pp. 57–60.