Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Deformation of the layered composite plates at low-speed contact with a rigid indenter

Published: 30.10.2023

Authors: Le Viet Tuan V.T.

Published in issue: #10(142)/2023

DOI: 10.18698/2308-6033-2023-10-2312

Category: Aviation and Rocket-Space Engineering | Chapter: Strength and Thermal Conditions of Aircraft

The computational finite element model of contact between a steel sphere and a composite plate was developed in the ANSYS software package. The model includes geometric description of the contact, materials management, computational mesh generation using the SOLID186 and SOLID187 finite elements, as well as the surface-to-surface contact model using the CONTA174 and TARGET170 contact elements. The paper identifies influence of the rigid sphere radius on the woven composite structure and shows areas of the local composite destruction. Satisfactory compliance was obtained between the numerical calculation results and full-scale study of a contact between rigid indenter of different radii and the fiberglass laminate. The safety factor values are provided according to four criteria. The developed model of contact between the indenter and the composite plate made it possible to obtain stress fields in the carbon-plastic composite material with the laying layers [45°, –45°]n and [45°, 90°, –45°, 0°]n. Destruction in layers based on the numerical calculation results was analyzed using various stress criteria. Carbon composite had more destroyed layers due to low strength in the transverse direction. Destruction zone in the carbon composite was larger than in the fiberglass composite, and the pattern [45°, –45°]n had a smaller damage area compared to [45°, 90°, –45°, 0°]n.


References
[1] Bratukhin A.G., Sirotkin O.S., Sabodazh P.F., Egorov V.N. Materialy buduschego i ikh udivitelnye svoystva [Materials of future and their properties]. Moscow, Mashinostroenie Publ., 1995, 128 p.
[2] Vasilyev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of structures of composite materials]. Moscow, Mashinostroenie Publ., 1998, 264 p.
[3] Kabakov V.V. Kompozitnye materialy v aviastroyenii [Composite materials in aviation industry]. Nauka i Biznes: puti razvitiya — Science and Business: Development Ways, 2019, no. 8, pp. 10–14.
[4] Nirusin R.V., Zolkin A.L., Semenov E.D., Perspektivy razvitiya polimernykh i kompozitsionnykh materialov v samoletostroyenii [Prospects of the polymer and composite development in the aircraft building]. In: Tekhnika i tekhnologiya sovremennykh proizvodstv: Sbornik statey II Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiyem [Engineering and technologies in modern production: Collection of articles of the II All-Russian Scientific and Practical Conference with international participation]. Penza, 2021, pp. 161–165.
[5] Barsukov G.V., Zhuravleva T.A. Issledovanie vliyaniya tekhnologicheskikh rezhimov gidroabrazivnogo rezaniya na rassloeniye poverkhnosti detaley iz steklotekstolita [Study of the influence of technological modes of waterjet cutting on the delamination of the surface of parts made of fiberglass]. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii — Fundamental and Applied Problems of Engineering and Technology, 2013, no. 4, pp. 47–55.
[6] Barsukov G.V., Zhuravleva T.A., Razrabotka spetsialnykh tekhnologicheskikh priemov, obespechivayuschikh isklyuchenie vliyaniya rassloyeniy na kachestvo detaley iz steklotekstolita pri gidroabrazivnoy rezke [Development of special technological methods to eliminate the influence of delamination on the quality of fiberglass laminate parts during waterjet cutting]. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii — Fundamental and Applied Problems of Engineering and Technology, 2014, no. 3, pp. 76–85.
[7] Pavelko I., Kuznetsov S., Smolyaninov M. Research of the contact strength of composite materials. In: Sci. Proc. VIII Int. Congr. “Machines, Technologies, Mater.”, 2011, no. 2, pp. 164–166.
[8] Kallagunta H., Tate J. S. Low-velocity impact behavior of glass fiber epoxy composites modified with nanoceramic particles. J. Compos. Mater., 2019, no. 54, pp. 2217–2228. https://doi.org/10.1177/0021998319893435
[9] Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayuschim gruzom [Drop-weight impact testing of polymer composite material]. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2013, no. 3, pp. 60–64.
[10] Voronov L., Coles L., Nikhamkin M., Silbershmidt V., Semenov S., Bolotov B. Experimental study of impact damage of carbon-epoxy plastic for aviation structures. Perm Natl. Res. Polytech. Univ. Aerosp. Eng. Bull., 2018, no. 54, pp. 5–16. https://doi.org/10.15593/2224-9982/2018.54.01
[11] Karpov E.V. Povrezhdenie mnogosloynogo tkanogo kompozita nizkoskorostnym vdavlivaniem zhostkogo sfericheskogo indentora [Damage to a multilayer woven composite by low-speed indentation of a rigid spherical indenter]. Doklady Akademii Nauk — Proceedings of the Academy of Science, 2018, no. 3, pp. 287–292. https://doi.org/10.7868/S0869565218030088
[12] Karpov E.V., Demeshkin A.G. Deformirovanie i razrushenie steklotekstolita, soderzhaschego metallicheskie sloi [Strain and fracture of glass-fiber laminate containing metal layers]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2018, no. 59, pp. 141–148. https://doi.org/10.15372/PMTF20180417
[13] Maksimenko V.N., Olegin I.P., Pustovoy N.V. Metody rascheta na prochnost i zhestkost elementov konstruktsiy iz kompozitov [Methods for calculating the strength and stiffness of structural elements made of composites]. Novosibirsk, 2013, NGTU Publ., 423 p.
[14] Grishin V.I., Dzyuba A.S., Dudarkov Yu. Prochnost i ustoychivost elementov i soedineniy aviatsionnykh konstruktsiy iz kompozitov [Strength and stability of elements and connections of aircraft structures made of composites]. Moscow, 2013, Fizmatlit Publ., 272 p.
[15] Meola C., Boccardi S., Carlomagno G.M. Composite Materials in the Aeronautical Industry. Infrared Thermography in the Evaluation of Aerospace Composite Materials. Elsevier, 2017, pp. 1–24. https://doi.org/10.1016/B978-1-78242-171-9.00001-2