Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Analysis of the efficiency of hydrocarbon propellant cooling using liquid nitrogen and a combination of recuperative heat exchangers

Published: 11.03.2020

Authors: Aleksandrov A.A., Barmin I.V., Zolin A.V., Chugunkov V.V.

Published in issue: #3(99)/2020

DOI: 10.18698/2308-6033-2020-3-1965

Category: Aviation and Rocket-Space Engineering | Chapter: Ground Complexes, Launch Equipment, Aircraft Exploitation

The paper describes the propellant cooling system using liquid nitrogen and a combination of recuperative heat exchangers, including sections of the double pipe heat exchanger and a twisted heat exchanger located in a tank with antifreeze, cooled by nitrogen gas coming out of the sections of the double pipe heat exchanger. Mathematical models of cooling processes for two variants of movement of propellant and liquid nitrogen in the channels of the double pipe heat exchanger sections are considered. Their using makes it possible to analyze the efficiency of propellant cooling operations depending on its mass, design parameters of the system tanks and heat exchangers, consumption characteristics of nitrogen and propellant, as well as to predict the required mass of liquid nitrogen and the time of propellant cooling during the operation of launching complex propellant-feed systems. Calculated dependences and simulation results of propellant and antifreeze cooling in a tank with a twisted heat exchanger are presented. The influence of variants of arranging propellant cooling processes and liquid nitrogen consumption on the efficiency of the cooling system is analyzed. Comparing to the available systems the capability of reducing the cost of liquid nitrogen are identified as well as reducing time of the propellant  cooling operations by means of equipping launch complexes.


References
[1] Aleksandrov A.A., Denisov O.E., Zolin A.V., Chugunkov V.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions. Маchine Building, 2013, no. 4, pp. 24–29.
[2] Aleksandrov A.A., Barmin I.V., Kunis I.D., Chugunkov V.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye — Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering, 2016, no. 2, pp. 7–27.
[3] Komlev D.E., Solovyov V.I. Okhlazhdenie naftila metodom kriogennogo barbotazha [Naphthyl cooling by cryogenic bubbling]. In: Novosti tekhniki [Technology news]. Moscow, Konstruktorskoe buro tochnogo mashinostroeniya Publ., 2004, pp. 137–141.
[4] Domashenko A.M., Blinova I.D. Khimicheskoe i neftegazovoe mashinostroenie — Chemical and Petroleum Engineering, 2007, no. 12, pp. 17–19.
[5] Nakoryakov V.E., Tsoi A.N., Mezentsev I.V., Meleshkin A.V. Sovremennaya Nauka: issledovaniya, idei, rezultaty, tekhnologii — Modern Science: Researches, Ideas, Results, Technologies, 2013, no. 1 (12), pp. 260–264.
[6] Nakoryakov V.E., Tsoi A.N., Mezentsev I.V., Meleshkin A.V. Thermophysics and Aeromechanics, 2014, vol. 21, iss. 3, pр. 279–284.
[7] Nakoryakov V.E., Tsoi A.N., Mezentsev I.V., Meleshkin A.V. Teplofizika i aeromekhanika — Thermophysics and Aeromechanics, 2014, vol. 21, no. 3, pp. 293–298.
[8] Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 1 (85). DOI: 10.18698/2308-6033-2019-1-1842
[9] Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2019, no. 3 (84), pp. 22–33. DOI: 10.18698/1812-3368-2019-3-22-33
[10] Kobyzev S.V. Nauka i obrazovanie: electronnyy nauchno-tekhnicheskiy zhurnal — Science and Education: Electronic Scientific and technical Journal, 2011, no. 11. Available at: http://engineering-science.ru/doc/245147.html (accessed January 20, 2020).
[11] Kobyzev S.V. Modelirovanie maccoobmennykh protsessov pri obezvozhivanii uglevodorodnogo raketnogo goruchego barbotirovaniem azotom [Simulation of mass transfer processes during dewatering of hydrocarbon rocket fuel by nitrogen bubbling]. Materialy XXXVI Akademicheskikh chteniy po kosmonavtike “Aktualnye problemy Rossiyskoy kosmonavtiki” [Proceedings of XXXVI Academic readings on cosmonautics “Actual problems of Russian cosmonautics”]. Moscow, Komissiya RAN Publ., 2012, pp. 356–357.
[12] Kobyzev S.V. Metodika poverochnogo rascheta protsessa osushki uglevodorodnogo goruchego metodom barbotazha gazoobraznym azotom [Method of confirmatory analysis of the process of hydrocarbon fuel dehydration by gaseous nitrogen bubbling]. Materialy XXXVII Akademicheskikh chteniy po kosmonavtike “Aktualnye problemy Rossiyskoy kosmonavtiki” [Proceedings of XXXVII Academic readings on cosmonautics “Actual problems of Russian cosmonautics”]. Moscow, Komissiya RAN Publ., 2013, pp. 385–386.
[13] Domashenko A.M. Sistemy termostatirovaniya [Temperature control systems]. In: Istoriya razvitiya otechestvennoy nazemnoy raketno-kosmicheskoy infrastruktury [History of Russian ground-based rocket and space infrastructure development]. Moscow, JSC “Stolichnaya entsiklopediya” Publ., 2017, pp. 299–301.
[14] Pavlov S.K., Chugunkov V.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 1 (49), p. 2. DOI: 10.18698/2308-6033-2016-1-1461
[15] Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions. Маchine Building, 2017, no. 4 (685), pp. 86–95.
[16] Chugunkov V.V., Denisova K.I., Pavlov S.K. Effective models of using liquid nitrogen for cooling liquid media. AIP Conference Proceedings — XLIII Academic Space Conference, 2019, vol. 2171, no. 200002. DOI: 10.1063/1.5133360