Remote ignition of the magnetoplasma compressor discharge by the insulated spark plug in vacuum
Authors: Pavlov A.V.
Published in issue: #12(156)/2024
DOI: 10.18698/2308-6033-2024-12-2410
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
Coaxial accelerator systems are used to obtain the powerful radiating plasma flows. These discharges are being studied in the gaseous media and vacuum. Discharge gap in the erosion-type accelerators exceeds the distance required for independent breakdown in vacuum at the designed permissible overvoltage. To solve the problem of the coaxial discharge gap breakdown in the magnetoplasma compressor in vacuum, the paper proposes to introduce a “spark plug” positioned outside the discharge channel and isolated from it, and to synchronize the main discharge voltage supply using a signal from the Rogowski coil installed on the spark plug. The paper presents results of experimental research confirming operability of such a system. It shows that introduction of the proposed scheme makes it possible to reduce the breakdown voltage in a magnetoplasma compressor approximately from 40 kV to 2.5 kV.
EDN APOIBM
References
[1] Protasov Yu.S. Radiatsionnaya plazmodinamika. T. 1. Mat. I Vsesoyuz. simp. po radiatsionnoy plazmodinamike AN SSSR [Radiation plasmodynamics. Vol. 1. Mat. 1st All-Union symposium on radiation plasmodynamics USSR AS]. Moscow, Energoatomizdat Publ., 1991, 572 p.
[2] Protasov Yu.S. Plazmennye istochniki izlucheniya vysokoy spektralnoy yarkosti [Plasma sources of radiation of the high spectral brightness]. Entsiklopediya nizkotemperaturnoy plazmy. T. 4: Vvodnyi tom [Encyclopedia of the Low-Temperature Plasma. Vol. 4: Introductory volume]. Fortov V.E., ed. Moscow, Nauka Publ., 2000, pp. 232–262.
[3] Kozlov N.P., Protasov Yu.S. On the mechanism of plasma focus formation in an ablation type magnetoplasma compressor. Phys. Lett., 1978, A. 67, pp. 191–193.
[4] Morozov A.I. Kvazistatsionarnyi plazmennyi uskoritel s ionnym tokoperenosom (KSPU) [Quasistationary plasma accelerator with the ion current transfer (KSPU)]. Entsiklopediya nizkotemperaturnoy plazmy. T. 3: Vvodnyi tom [Encyclopedia of the Low-Temperature Plasma. Vol. 3: Introductory volume]. Fortov V.E., ed. Moscow, Nauka Publ., 2000, pp. 482–489.
[5] Gribkov V.A. et al. Ustanovka “Vikhr” tipa “Plazmennyi focus” dlya diagnostiki radiatsionno-termicheskoy stoykosti materialov, perspektivnykh dlya termoyadernoy energetiki i aerokosmicheskoy tekhniki [The Vikhr Plasma Focus device for diagnosing the radiation-thermal resistance of materials intended for thermonuclear energy and aerospace engineering]. Pribory i tekhnika eksperimenta — Instruments and Experimental Techniques, 2020, vol. 63, no. 1, pp. 75–83.
[6] Anevsky S.I., Vernyi A.E., Kozlov N.P., Konev Lv., Malaschenko V.A., Morozov O.Yu., Tsygankov P.A. Use of synchrotron radiation for calibration of a working measuring instrument based on plasma focus. Nuclear Instruments and Methods in Physics Research, 1989, A. 282, pp. 714–715.
[7] Kamrukov A.S., Kozlov N.P., Opekan A.G., Protasov Yu.S., Rudoy I.G., Soroka A.M. Rekombinatsionnyi lazer na atomarnom ksenone s vozbuzhdeniem teplovym ioniziruyushchem izlucheniem MPK-razryada [Recombination laser on the atomic Xenon with excitation by thermal ionizing radiation of the MPC discharge]. Kvantovaya elektronika — Quantum Electronics, 1989, no. 7, pp. 1333–1345.
[8] Popov G.A., Antropov N.N. Ablative PPT. New quality, new perspectives. Acta Astronautica, 2006, vol. 59, p. 175.
[9] Astashynski V.M., Dzahnidze H.M., Kostyukevich E., Kuzmitski A., Shoro-nov P.N., Shymanski V.I., Uglov V.V. Generation of erosion compression plasma flows in a miniature plasma accelerator and their capability for formation of thin nanostructured coating. High Temperature Material Processes, 2020, vol. 24 (2), pp. 99–107.
[10] Sivkov A.A., Vympina Yu.N., Rakhmatullin I.A., Ivashutenko A.S., Shanenkova Yu.L., Shanenkov I.I., Nikitin D.S. Sintez dioksida titana plazmodinamicheskim metodom s vozmozhnostyuy regulirovaniya granulometricheskogo sostava [Synthesis of the titanium dioxide by a plasmodynamic method with the possibility of regulating the granulometric composition]. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya — Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2022, no. 1, pp. 51–57.
[11] Pavlov A., Shchepanyuk T., Skriabin, A., Telekh V. Gas dynamics processes above the polymers surface under irradiation with broadband high-brightness radiation in the vacuum ultraviolet spectrum region. Polymers, 2022, vol. 14, p. 3940.
[12] Pavlov A.V., Protasov Yu.Yu., Telekh V.D., Shchepanuk T.S. Laser holographic interferometry of short ultraviolet radiation with high power density interaction with condensed matters. Scientific Visualization, 2019, vol. 11, no. 3, pp. 111–125. https://doi.org/10.26583/sv.11.3.10
[13] Protasov Y.Y., Shchepanyuk T.S., Skriabin A.S., Telekh V.D. Features of surface ablation under exposure to high-brightness VUV radiation from pulsed high-current discharges. High Energy Chemistry, 2023, vol. 57, suppl. 1. https://doi.org/10.1134/S0018143923070317
[14] Avdienko A.A., Lysenko A.P. Poverkhnostnyi proboy izolytorov v vakuume na nanosekundnykh impulsakh [Surface insulator breakdown in vacuum on the nanosecond pulses]. IYaF SO AN SSSR. Preprint no. 81–70. Novosibirsk, IYaF Publ., 1970, p. 24.
[15] Воstiсk W.Н. Experimental Study of Ionized Matter Projected across a Magnetic Field. Phys. Rev., 1956, vol. 104, pp. 292–299.