Evaluation of the geostationary tow truck spacecraft design parameters
Authors: Shcheglov G.A., Merkulova A.A.
Published in issue: #12(156)/2024
DOI: 10.18698/2308-6033-2024-12-2409
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper considers a tow truck recovery spacecraft designed for active removal of a group of the large space debris from a geostationary orbit to the disposal orbit. It finds simplified analytical relationships to compute the spacecraft main subsystems mass depending on the type of a propulsion system used. The paper shows that a tow truck spacecraft equipped with an electric jet propulsion system satisfying existing limitations to the available launch vehicles would be able to perform a mission of removing thirty spent upper stages from a geostationary orbit to the disposal orbit. The paper also demonstrates that when using a sustainer propulsion system equipped with the liquid rocket engine on the long-storable propellant components at a significantly lower development cost, the tow truck spacecraft is able to perform a mission of removing half of the existing space debris. On the one hand, using two spacecraft increases the launch costs; but on the other hand, it allows creating a simpler, more reliable and economical spacecraft, as well as accelerating the geostationary orbit cleaning in case two spacecraft are operating in parallel. Further research should be aimed at analyzing the technical and economic indicators of the two options considered in the work.
EDN BBLGGY
References
[1] GOST R 52925–2008. Izdeliya kosmicheskoy tekhniki. Obshchie trebovaniya k kosmicheskim sredstvam po ogranicheniyu tekhnogennogo zasoreniya okolozemnogo kosmicheskogo prostranstva. [GOST R 52925–2008. Space technology items. General requirements for mitigation of near-earth space debris population]. Moscow, Standartinform Publ., 2008, 8 p.
[2] Baranov A.A., Grishko D.A. Review of path planning in prospective multi-target active debris removal missions in low earth orbits. Progress in Aerospace Sciences, 2024, vol. 145, ID 100982. https://doi.org/10.1016/j.paerosci.2024.100982
[3] Grishko D.A., Baranov A.A., Shcheglov G.A. Altitude optimality boundary of two variants of large space debris removal to disposal orbits. Acta Astronautica, 2024, vol. 223, pp. 328–341. https://doi.org/10.1016/j.actaastro.2024.07.016
[4] Baranov A.A., Grishko D.A., Khukhrinab O.I., Chend D. Optimal transfer schemes between space debris objects in geostationary orbit. Acta Astronautica, 2020, vol. 169, pp. 23–31. https://doi.org/10.1016/j.actaastro.2020.01.001
[5] Grishko D.A., Vasilkov B.O. O nekomplanarnom perekhode vtorogo tipa mezhdu dvumya krugovymi orbitami. [On the non-coplanar transfer of the type II between two circular orbits]. Aviatsionnaya tekhnika — Russian Aeronautics, 2018, no. 3, pp. 35–41.
[6] Ulybyshev S.Yu. Matematicheskoe modelirovanie i sravnitelnyi analiz skhem primeneniya apparata-buksirovshchika dlya resheniya zadachi uvoda obyektov kosmicheskogo musora na orbitu zakhoroneniya. Chast 1 [Mathematical modeling and comparative analysis towing vehicle schemes application to solve the problem of space debris objects removal to the disposal orbit. Part 1]. Trudy MAI, 2019, no. 106, 28 p. Available at: https://trudymai.ru/published.php?ID=105746
[7] Ulybyshev S.Yu. Matematicheskoe modelirovanie i sravnitelnyi analiz skhem primeneniya apparata-buksirovshchika dlya resheniya zadachi uvoda obyektov kosmicheskogo musora na orbitu zakhoroneniya. Chast 2. [Mathematical modeling and comparative analysis towing vehicle schemes application to solve the problem of space debris objects removal to the disposal orbit. Part 2]. Trudy MAI, 2019, no. 107, 28 p. Available at: https://trudymai.ru/published.php?ID=107855
[8] Leonov A.G. Zelentsov Vl.V., Shcheglov G.A. Kosmicheskie apparaty dlya utilizatsii kosmicheskogo musora [Spacecraft for the space debris disposal]. Moscow, VPK “NPO Mashinostroeniya” Publ., 2019, 48 p.
[9] Shcheglov G.A., Stogniy M.V. Kosmicheskiy kompleks dlya utilizatsii gruppy obyektov krupnogabaritnogo kosmicheskogo musora. Patent RF na izobretenie RU 2695155 [Space complex for disposal of a group of objects of the large-sized space debris. Patent of the RF on Invention RU2695155], 2019, bull. no. 21.
[10] Stogniy M.V., Shcheglov G.A. Vybor parametrov sistemy amortizatsii manipulyatora dlya sputnika-utilizatora obyektov kosmicheskogo musora. [Selection of manipulator shock-absorbing system parameters for the space debris disposal spacecraft]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 9. https://doi.org/10.18698/2308-6033-2020-9-2013
[11] Krainski M., Girardin P., Aziz S., Englert C., Tagliapietra F., Marwaha V. Design of a hardware-in-the-loop simulation testbed for the Camera and Lighting Unit of the European Robotic Arm. In: 14th Symposium on Advanced Space Technologies in Robotics and Automation, ASTRA 2017.
[12] Tumanov A.V., Zelentsov V.V., Shcheglov G.A. Osnovy komponovki bortovogo oborudovaniya kosmicheskih apparatov [Fundamentals of layout of the spacecraft onboard equipment]. Moscow, BMSTU Publ., 2018, 572 p.
[13] Ermolaev V.I. Proektirovanie transportnykh kosmicheskikh apparatov [Design of the transport spacecraft]. St. Petersburg, BGTU Publ., 2019, 65 p.
[14] Block D. Russian space web. Available at: https://www.russianspaceweb.com/n1_d.html (accessed November 24, 2024).
[15] Space-track. Available at: https://www.space-track.org (accessed November 24, 2024).
[16] Vasin A.I., Koroteev A.S., Lovtsov A.S., Muravlev V.A., Shagayda A.A., Shutov V.N. Obzor rabot po elektroraketnym dvigatelyam v Gosudarstvennom nauchnom tsentre FGUP “Tsentr Keldysha”. [Review of works on electric propulsion at Keldysh Research Center]. Trudy MAI, 2012, no. 60, 9 p. Available at: https://trudymai.ru/published.php?ID=35335
[17] Onufrieva E.V., Onufriev V.V., Sinyavskiy V.V. O vliyanii energovooruzhennosti korrektiruyushchey dvigatelnoy ustanovki nizkoorbitalnogo kosmicheskogo apparata na ego srok aktivnogo suschestvovaniya [On the influence of power corrective propulsion low-orbit spacecraft in his active lifetime]. Izvestiya RAN. Energetika — Proceedings of the Russian Academy of Sciences, Power Engineering, 2019, no. 4, pp. 119–129.
[18] Salmin V.V., Chetverikov A.S., Gogolev M.Yu. Raschet proektno-ballisticheskikh kharakteristik i formirovanie proektnogo oblika mezhorbitalnykh transportnykh apparatov s elektroreaktivnoy dvigatelnoy ustanovkoy s ispolzovaniem informatsionnykh tekhnologiy [Computation of design ballistic characteristics and formation of design appearance of the interorbital transport vehicles with an electric propulsion system using the information technology]. Samara, Samara University Publ., 2019, 196 p.
[19] Lebedev V.N. Raschet dvizheniya kosmicheskogo apparata s maloy tyagoy [Calculation of the low-thrust spacecraft motion]. Moscow, Vychislitelnyi Tsentr AN SSSR Publ., 1968, 108 p.
[20] Raketa-nositel “Angara-A5” [Angara-A5 launch vehicle]. Roscosmos. Available at: https://www.roscosmos.ru/36320/ (accessed November 24, 2024).
[21] AO “Nauchno-issledovatelskiy institut mashinostroeniya”. Katalog produktsii 2022 [JSC Research Institute of Machine Building. Product catalogue 2022]. Available at: https://www.niimashspace.ru/files/2020/Katalog-NIIMash-2020_compressed.pdf (accessed November 24, 2024).
[22] Final report on a study of automated rendezvous and docking for ATS 5 despin, vol.1. NASA Technical Report. SD-71-286-VOL-1. NASA-CR-119001. Available at: https://ntrs.nasa.gov/citations/19710019685 (accessed November 24, 2024).
[23] Shawn Baxter McCamish, Marcello Romano, Xiaoping Yun. Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers. IEEE Transactions on Automation Science and Engineering, 2010, vol. 7, no. 3, pp. 630–644. https://doi.org/10.1109/TASE.2009.2039010