Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Introducing digital radiography in productionof aircraft structures head elements

Published: 01.11.2024

Authors: Terekhin A.V., Filatov A.A., Atroshchenko V.F., Chulkov D.I.

Published in issue: #11(155)/2024

DOI: 10.18698/2308-6033-2024-11-2399

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

In the manufacture of head structural elements of aircraft, adhesive joints are widely used to connect the shell made of ceramic or polymer-composite material with a metal frame. During the process of implementation, there is a risk of forming defects of the “non-glued” type, which significantly reduce the strength characteristics of the adhesive joint unit and the reliability of the aircraft as a whole. In this regard, it is necessary to carry out non-destructive testing of the adhesive joint unit in assembly. The paper presents results of upgrading the existing non-destructive testing system of aircraft head structural elements by radiation methods and introducing digital radiography methods and technical means using flat-panel detectors instead of the previously used methods of radiography and fluoroscopy with the X-ray electron-optical converters. Quality of the obtained X-ray images of the adhesive joint unit of the aircraft structural element is comparatively assessed, as well as the effect of their introduction in the serial production.

EDN ENWLLN


References
[1] Rusin M.Yu. Proektirovanie golovnykh obtekateley raket iz keramicheskikh i kompozitsionnykh materialov [Design of the rocket head fairing from ceramic and composite materials]. Moscow, BMSTU Publ., 2005, 64 p.
[2] Kharitonov D.V., Tychinskaya M.S., Anashkina A.A., Makarov N.A., Leme-shev D.O. Keramicheskie materialy dlya aviatsii i kosmosa [Ceramic materials for aircraft and space]. Moscow, RKhTU im. D.I. Mendeleev Publ., 2022, 120 p.
[3] Pivinsky Yu.E., Suzdaltsev E.I. Kvartsevaya keramika i ogneupory. Tom 1. Teoreticheskie osnovy i tekhnologicheskie protsessy: Spravochnoe izdanie [Quartz ceramics and refractory materials. Volume 1. Theoretical bases and technological processes: Reference book]. Yu.E. Pivinsky, ed. Moscow, Teploenergetik Publ., 2008, 672 p.
[4] Terekhin A.V. Razrabotka metodov i sovershenstvovanie tekhnicheskikh sredstv otsenki rabotosposobnosti elastomernykh kleevykh soedineniy konstruktsiy letatelnykh apparatov. Dis. … kand. tekhn. nauk [Development of methods and improvement of hardware components in assessing operability of the elastomeric glued joints of the aircraft constructions. Diss. … Cand. Sc. (Eng.)]. Moscow, 2016, 212 p.
[5] Dumansky A.M. Problemy materialovedeniya v mashinostroenii [Material science problems in mechanical engineering]. Moscow, Izhevsk, Institut Kompiuternykh Issledovaniy Publ., 2015, 51 p.
[6] Sosnin F.R. Radiatsionnyi kontrol [Radiation control]. In: Nerazrushayushchiy kontrol: spravochnik v 8 t. [Non-destructive control: reference book in 8 vols.]. Vol. 1. V.V. Klyuev, ed. 2nd ed., rev. Moscow, Mashinostroenie Publ., 2006, 560 p.
[7] Dobromyslov V.A. Radiatsionnye metody nerazrushayushchego kontrolya [Radiation methods of nondestructive control]. Moscow, Mashinostroenie Publ., 1999, 104 p.
[8] Kosarina E.I., Krupnina O.A., Demidov A.A., Turbines E.M. Tsifrovaya radiografiya v nerazrushayushchem kontrole aviatsionnoy tekhnike [Digital radiography in nondestructive testing of aerostructures]. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2017, no. S, pp. 562–574.
[9] Osipov S.P., Klimenov V.A., Batranin A.V., Shteyn A.M., Prishchepa I.A. Primenenie tsifrovoy radiografii i rentgenovskoy vychislitelnoy tomografii pri issledovanii stroitelnykh konstruktsiy i v stroitelnom materialovedenii [Digital radiography and x-ray computerized tomography in building construction and construction materials science]. Vestnik TGASU — Journal of Construction and Architecture, 2015, no. 6 (53), pp. 116–127.
[10] Smirnov A.V., Kosarina E.I., Suvorov P.V. Otsenka kachestva otlivok iz alyuminievykh i magnievykh splavov metodom tsifrovoy radiografii vzamen traditsionnoy plenochnoy tekhnologii [Quality evaluation of castings from aluminum and magnesium alloys by the digital radiography method instead of the traditional film technology]. In: Materialy XIII Vserossiyskoy konferentsii po ispytaniyam i issledovaniyam svoystv materialov “TestMat” (Moskva, 12 fevralya 2021 g.) [Materials of the XIII All-Russian conference on tests and research in material properties “TestMat” (Moscow, February 12, 2021)]. Moscow, VIAM Publ., 2021, pp. 133–143.
[11] Tsibulsky A.V., Ulanov V.V. Tsifrovaya radiografiya: podkhod k povysheniyu effektivnosti nerazrushayushchego kontrolya svarnykh soedineniy magistralnykh truboprovodov [Digital radiography: approach to increase efficiency of nondestructive control in welded connections of the main gas pipelines]. Delovoy zhurnal Neftegaz.RU — Neftegaz RU, 2024, no. 1, pp. 90–92. Available at: https://magazine.neftegaz.ru/articles/tsifrovizatsiya/812679-tsifrovaya-radiografiya-podkhody-k-povysheniyu-effektivnosti-nerazrushayushchego-kontrolya-svarnykh-/ (accessed August 27, 2024).
[12] Mayorov A.A. Tsifrovye tekhnologii v nerazrushayushchem kontrole [Digital technologies in nondestructive control]. Sfera Neftegaz — Sphere. Oil and Gas, 2009, no. 9, pp. 26–37.
[13] Troitskiy V.A., Mikhaylov S.R., Pastovensky R.A., Shilo D.S. Sovremennye sistemy radiatsionnogo nerazrushayushchego kontrolya [Modern systems of radiation nondestructive control]. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol — Technical Diagnostics and Nondestructive Control, 2015, no. 1, pp. 23–35.