Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Evaluating design parameters of the IoT satellite constellation in the extremely low orbits

Published: 01.08.2024

Authors: Shcheglov G.A., Taratonkina V.S.

Published in issue: #8(152)/2024

DOI: 10.18698/2308-6033-2024-8-2378

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The task of providing high-quality communication and high-speed Internet access anywhere on Earth is nowadays of utmost importance in successful development of the public and private digital services. The paper presents a simplified methodology for assessing design parameters of a constellation of the 5G Internet of Things information satellites positioned in an extremely low orbit at the altitude of 200 km and integrated into the non-terrestrial information network. Such network includes not only the space, but also the airborne segments. The paper demonstrates exponential dependence of the total number of satellites on the permissible elevation angle above the horizon. It presents results of computing the operation altitude for the atmospheric airborne vehicles included in the non-terrestrial network and shows advantages of introducing the network atmospheric segment. They include: reducing power consumption on board a spacecraft by 1.2 times; increase in the radio communication session duration by 1.9 times; reducing the satellite constellation size by 3.3 times; as well as reduction in the constellation total mass by 3.4 times compared to the Non-Terrestrial Network (TTN), which is not using the airborne segment. Main design parameters of a satellite included in the constellation are provided.

 EDN MCBVMH

 


References
[1] Yung K.L., Ip A.W.H., Fatos Xhafa, Tseng K.K. IoT and Spacecraft Informatics (Aerospace Engineering). Elsevier, 2022, 376 p.
[2] Promyshlennyi internet veschey [Industrial Internet of Things]. Agentstvo promyshlennogo razvitiya Moskvy — Moscow Industrial Development Agency. Available at: https://apr.moscow/content/data/5/03%20Промышленный%20интернет%20вещей.pdf (accessed October 15, 2023).
[3] Seti 5G v Rossii — tekhnologiya i ee vnedrenie [5G networks in Russia – technology and its implementation]. Available at: https://5g-russia.ru/ (accessed November 12, 2023).
[4] Kabmin zakrepil reshenie o raspredelenii radiochastot dlya sistemy upravleniya BPLA [The Cabinet of Ministers fixed the decision on distribution of radio frequencies for the UAV control system]. TASS. Available at: https://tass.ru/ekonomika/18791761 (accessed November 15, 2023).
[5] Non Terrestrial Networks (NTN). Rohde & Schwarz. Available at: https://www.rohde-schwarz.com/us/solutions/test-and-measurement/wireless-communication/cellular-standards/5g-test-and-measurement/non-terrestrial-networks-ntn/non-terrestrial-networks-ntn_256719.html (accessed May 30, 2024).
[6] “Besshovnoe tsifrovoe nebo” uprostit integratsiyu grazhdanskikh aviabespilotnikov [“The seamless digital sky” will simplify integration of the civilian UAVs]. AviaPort. 19.04.2024, 16:54 Available at: https://www.aviaport.ru/news/besshovnoe-tsifrovoe-nebo-uprostit-integratsiyu-grazhdanskikh-aviabespilotnikov/ (accessed May 30, 2024).
[7] V Moskve otkryli obshchestvennoe prostranstvo dlya razvitiya dronov i chastnogo kosmosa [Public space was opened in Moscow for the development of drones and private space]. Fond NTI — NTI Fund. 13.04.2024. Available at: https://nti.fund/about/news/?ELEMENT_ID=3767 (accessed May 30, 2024).
[8] Shcheglov G.A., Taratonkina V. S. Otsenka proektnykh parametrov gruppirovki informatsionnykh sputnikov IoT 5G [Design parameters evaluation of the IoT 5G information satellites constellation]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2023, iss. 7. http://dx.doi.org/10.18698/2308-6033-2023-7-2289
[9] Gogo Business Aviation. Official site. Available at: https://www.gogoair.com/ (accessed May 30, 2024).
[10] Gogo eyes 3Q 2024 for 5G shipments as chip problem bites. Runwaygirlnetwork. 13.11.2023. Available at: https://runwaygirlnetwork.com/2023/11/gogo-third-quarter-2024-5g-chip/ (accessed May 30, 2024).
[11] Anuchin N.P. Lesnaya taksatsiya [Forest taxation]. 5th ed. Moscow, Lesnaya Promyshlennost Publ., 1982, 552 p.
[12] Zagreev V.V., Gusev N.N., Moshkalev A.G., Selimov SH.A. Lesnaya taksatsiya i lesoustroystvo [Forest taxation and forest management]. Moscow, Ekologiya Publ., 1991, 384 p.
[13] Nazvana srednyaya vysota novostroek v Rossii [Average height of new buildings in Russia is indicated]. TsIAN. Available at: https://www.cian.ru/novosti-nazvana-srednjaja-vysota-novostroek-v-rossii-313522/ (accessed January 8, 2024).
[14] Skolko vysota odnogo etazha? Normy dlya mnogokvartirnykh i individualnykh domov [How high is one floor? Standards for the tenement and individual houses]. Stroy-Beton. Available at: https://vostokstroy-belebey.ru/strojka-i-remont/vysota-etazha-zhilogo-doma.html?utm_referrer=https%3A%2F%2Fyandex.ru%2F (accessed January 08, 2024).
[15] Movchan A.K., Rogozhnikov E.V., Dmitriev E.M., Novichkov S.A., Lakontsev D.V. Raschet oslableniya signala setey sotovoy svyazi 5G dlya chastot diapazona FR1 [Calculation of signal attenuation of 5G cellular networks for frequencies of the FR1 band]. Doklady TUSUR — Proceedings of TUSUR University, 2022, vol. 25, no. 1. Available at: https://cyberleninka.ru/article/n/raschet-oslableniya-signala-setey-sotovoy-svyazi-5g-dlya-chastot-diapazona-fr1/viewer (accessed December 20, 2023).
[16] Fokin G.A. Obzor modeley radiokanala svyazi s bespilotnymi letatelnymi apparatami [Survey of radio communication channel models for unmanned aerial vehicles]. Trudy uchebnykh zavedeniy svyuzi — Proceedings of Telecommunication Universities, 2018, vol. 4, no. 4, pp. 85–101. https://doi.org/10.31854/1813-324X-2018-4-4-85-101
[17] Moshchnost signala i radius raboty [Signal strength and operating radius]. Urouter. Available at: https://urouter.ru/how-it-works/signal-strength-and-range.html (accessed December 4, 2024).
[18] SP 42.13330.2016. Gradostroitelstvo. Planirovka i zastroyka gorodskikh i selskikh poseleniy [SP 42.13330.2016. Urban development. Urban and rural planning and development]. Available at: https://docs.cntd.ru/document/456054209 (accessed January 13, 2024).
[19] Moskva. Bolshaya rossiyskaya entsiklopediya [Moscow. The Great Russian Encyclopedia]. Available at: https://bigenc.ru/c/moskva-a34bd2 (accessed January 13, 2024).
[20] Patch-antenna 3G, 4G, Wi-Fi [3G, 4G, Wi-Fi patch antenna]. 3G-Aerial. Available at: https://3g-aerial.biz/konstruktsii-antenn/odnonapravlennye-antenny/patch-antenna (accessed January 12, 2024).
[21] Chebotarev V.E., Kosenko V.E. Osnovy proektirovaniya kosmicheskih apparatov informatsionnogo obespecheniya [Fundamentals of design of the information support spacecraft]. Krasnoyarsk, 2011, 488 p.
[22] GOCE (Earth Explorer 1). Gunter’s Space Page. Available at: https://space.skyrocket.de/doc_sdat/goce.htm (accessed January 13, 2024).
[23] Erofeev, A.I., Nikiforov, A.P., Popov, G.A. et al. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag. Solar System Research, 2017, vol. 51, pp. 639–645. https://doi.org/10.1134/S0038094617070048
[24] AO GNTs «Tsentr Keldysha» [State Scientific Center of the Russian Federation “Keldysh Research Center”]. Available at: https://keldysh-space.ru/nasha-deyatelnost/raketno-kosmicheskaya-deyatelnost/raketnye-dvigateli/ (accessed November 7, 2023).