Spacecraft orbital orientation stabilization by the inertial executive devices using unloading by the structure transformation method
Authors: Simonyants R.P., Bulavkin V.N.
Published in issue: #5(149)/2024
DOI: 10.18698/2308-6033-2024-5-2359
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper presents a method of unloading the inertial executive bodies in the spacecraft orbital orientation stabilization system without consuming the working fluid mass. It is based on application of the structure adaptive transformation principle. The properly changed object parameters form the external moments providing release of the kinetic moment accumulated during stabilization. An analysis of the external moment’s sensitivity to variations in the transformed structure parameters is provided creating a basis to select the influence parameter that realizes the most effective unloading. The paper considers an example of a geostationary spacecraft equipped with solar panels with the autonomous drive making it possible to control the structure configuration and ensure unloading by the solar light pressure moments without violating the orbital orientation. For a simplified model of the plane pitch motion dynamics, analytical solutions were obtained, they were confirmed by simulation.
EDN QOBKMM
References
[1] Zubov N.E., Mikrin E.A., Negodyayev C.C., Ryabchenko V.N. Sintez odnokanalnoy sistemy razgruzki kineticheskogo momenta inertsionnykh ispolnitelnykh organov kosmicheskogo apparata [Synthesis of single-channel system unloading kinetic moment of inertia in the executive bodies of a spacecraft]. Trudy MFTI — Proceedings of MIPT, 2012, vol. 4, no. 3, pp. 198–204.
[2] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Stabilizatsiya orbitalnoy orientatsii kosmicheskogo apparata s odnovremennoy razgruzkoy kineticheskogo momenta inertsionnykh ispolnitelnykh organov [Stabilization of the spacecraft’s orbital orientation with simultaneous unloading of the kinetic momentum of inertial executive devices]. Izvestiya RAN. Ser. Teoriya i sistemy upravleniya — Journal of Computer and Systems Sciences International, 2015, no. 4, pp. 124–131.
[3] Bogachev A.V., Vorobyova E.A., Zubov N.N. Upravlenie orientatsiey i razgruzka nakoplennogo kineticheskogo momenta inertsionnykh ispolnitelnykh organov kosmicheskogo apparata na vysokoellipticheskoy orbite [Orientation control and unloading of the accumulated kinetic momentum of the spacecraft inertial executive devices in a highly elliptical orbit]. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2017, no. 3 (18), pp. 98–105.
[4] Vorobyova E.A., Zubov N.E., Mikrin E.A. Bezraskhodnaya razgruzka nakoplennogo kineticheskogo momenta inertsionnykh ispolnitelnykh organov avtonomnogo kosmicheskogo apparata na vysokoellipticheskoy orbite [Desaturation method for accumulated actuator momentum of the spacecraft on high-elliptic orbit without fuel consumption]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, iss. 10. http://dx.doi.org/10.18698/2308-6033-2013-10-1072
[5] Johnson C.D., Skelton R.E. Optimal Desaturation of Momentum Exchange Control Systems. AIAA Journal, 1971, vol. 1, pp. 12–22.
[6] Somov E.E. Ekonomnaya razgruzka silovogo giroskopicheskogo kompleksa sistemy orientatsii sputnika pri shirotno-impulsnom upravlenii s zapazdyvaniem [Economical unloading of the power gyroscopic system of the satellite orientation system with the pulse-width delayed control]. In: Trudy XII Vserossiyskogo soveshchaniya po problemam upravleniya [Proceedings of the XII All-Russian Conference on the control problems]. Moscow, IPU RAN Publ., 2014, pp. 3475–3488.
[7] Simonyants R.P. O razrabotke kosmicheskogo apparata transformiruemoy konstruktsii, optimiziruyushchey ego svoystva kak obyekt upravleniya [On the development of a spacecraft transformable design that optimizes its properties as a control object]. In: Sb. statey Mezhdunar. konf. “Perspektivnye zadachi inzhenernoy nauki” [Collection of articles of the International Conference “Promising tasks of the engineering science»”]. Moscow, ID “Master” Publ., 2022, pp. 216–222.
[8] Batseva O.D., Dmitriev S.N. Uchet vysshikh tonov kolebaniy pri vychislenii chuvstvitelnosti sobstvennykh form kolebaniy k variatsiyam parametrov mekhanicheskoy sistemy [Accounting the highest tones of oscillations when calculating the sensitivity of modes of their own to variations in the parameters of a mechanical system]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. https://doi.org/10.18698/2308-6033-2018-7-1785
[9] Bikhman R.I., Sheremetyevsky N.N. Elektromagnitnaya sistema sbrosa kineticheskogo momenta dlya iskusstvennykh sputnikov Zemli, orientirovannykh v orbitalnoy sisteme koordinat [Electromagnetic kinetic momentum unloading system for artificial Earth satellites oriented in the orbital coordinate system]. In: Izbrannye problemy prikladnoy mekhaniki [Selected problems of applied mechanics]. Moscow, Nauka Publ., 1974, pp. 133–143.
[10] Makarova E.A., Kharitonov A.V., Kazachevskaya T.V. Potok solnechnogo izlucheniya [Solar radiation flux]. Moscow, Nauka Publ., 1991, 400 p.
[11] World Radiation Center. Available at: http://www.pmodwrc.ch (accessed September 6, 2023).
[12] Fedorov V.M. Sinodicheskaya variatsiya v mezhgodovoy izmenchivosti solnechnoy postoyannoy [Synodic fluctuations in the interannual variability of the solar constant]. Solnechnaya radiatsiya i klimat Zemli — Solar radiation and climate of the Earth. Available at: http://www.solar-climate.com (accessed September 6, 2023).
[13] GOST 25645.101–83. Atmosfera Zemli verkhnyaya. Model plotnosti dlya proektnykh ballisticheskikh raschetov iskusstvennykh sputnikov Zemli [Earth upper atmosphere. Density model for project ballistic computations of artificial Earth satellites]. Moscow, Standartov Publ., 1984, 172 pp.
[14] Petrov B.N., Ageev J.S., Viktorov B.V., Ukolov I.S. Upravlenie uglom ataki kosmicheskogo apparata posredstvom izmeneniya tsentrovki [Control of the spacecraft angle of attack by means of the alignment alteration]. Kosmicheskie issledovaniya — Cosmic Research, 1970, vol. 8, no. 6, pp. 855–861.
[15] Simonyants R.P., Alekhin N.A., Tarasov V.A. Upravlyaemyi tenzor inertsii kosmicheskogo apparata transformiruemoy konstruktsii [Controlled inertia tensor of a transformable spacecraft]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2021, iss. 7. https://doi.org/10.18698/2308-6033-2021-7-2095
[16] Latyntsev S.V., Meus S.V., Ovchinnikov A.V., Babanov A.A. Otsenka effektivnosti algoritma upravleniya privodom solnechnykh batarey kosmicheskogo apparata s tselyu sozdaniya momentov dlya razgruzki elektromekhanicheskogo ispolnitelnogo organa SOS [Evaluation of the effectiveness of the algorithm for controlling the drive of spacecraft solar panels in order to create moments for unloading the electromechanical executive devices of the orbit stabilization system]. Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov. In: Sb. tr. Chetvertoy Vseross. konf., Tarusa, 8–11 sentyabrya 2014, IKI RAN [Modern problems of spacecraft orientation and navigation. Collection of works of the Fourth All-Russian Conference, Tarusa, September 8–11, 2014, IKI RAS]. Moscow, IKI RAN Publ., 2015, pp. 348–352.
[17] Sevastyanov N.N. Sozdanie matematicheskoy modeli vneshnikh vozmushchayushchikh momentov dlya rezhima “Prognoz” sputnika svyazi Uamal-200 [Creation of a mathematical model of external disturbing moments for the “Forecast” regime of the Yamal-200 communication satellite]. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2013, no. 4 (24), pp. 88–98.