Design of the ultra-low orbit Earth remote sensing spacecraft
Authors: Sobolev I.A.
Published in issue: #4(148)/2024
DOI: 10.18698/2308-6033-2024-4-2351
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper considers possible design of the Earth remote sensing spacecraft intended for operation in the ultra-low orbits at an altitude of 200...300 km. It reviews the previously developed spacecraft operating in the ultra-low orbits and their main characteristics. Requirements to the spacecraft layout are formulated taking into consideration flight parameters in a zone with significant aerodynamic influence. Characteristics of the optoelectronic equipment to install on such spacecraft are assessed. Operation schemes of the propulsion system based on the SPD-100 electric rocket engines having sufficient flight experience are analyzed, working fluid reserves and mass of the propulsion system are estimated, and results of the correction maneuver computation are presented. The paper proposes main design solutions required in creation of a spacecraft of this class, in particular in design and development of optoelectronic equipment, power supply systems, orientation and stabilization systems.
EDN ZYCUKF
References
[1] Konyukhov S.N., Maschenko, Pappo-Korystin et al. Rakety i kosmicheskie apparaty Konstruktorskogo byuro “Yuzhnoe” [Rockets and spacecraft of the Yuzhnoe Design Bureau]. Dnepropetrovsk, GKB “Yuzhnoe” im. M.K. Yangelya Publ., 2000, 239 p.
[2] A Jewel in ESA’s Crown. Available at: https://www.esa.int/esapub/bulletin/bulletin133/bul133c_fehringer.pdf (accessed January 26, 2024).
[3] SLATS: Super Low Altitude Test Satellite. Available at: https://global.jaxa.jp/activity/pr/brochure/files/sat37.pdf (accessed January 26, 2024).
[4] Super Low Altitude Test Satellite (SLATS) “TSUBAME” has set a GUINESS WORLD RECORDS(R). Available at: https://global.jaxa.jp/press/2019/12/20191224a.html (accessed January 26, 2024).
[5] KH-7 Gambit-1. Available at: https://space.skyrocket.de/doc_sdat/kh-7.htm (accessed January 26, 2024).
[6] KH-8 Gambit-3 (Block 1). Available at: https://space.skyrocket.de/doc_sdat/kh-8_bl1.htm (accessed January 26, 2024).
[7] KH-9 Hexagon. Available at: https://space.skyrocket.de/doc_sdat/kh-9.htm (accessed January 26, 2024).
[8] Volotsuev V.V. Nizkoorbitalnye kosmicheskie apparaty vysokodetalnogo nablyudeniya s dlitelnym srokom sushchestvovaniya na rabochikh orbitakh vysotoy nizhe chetyrekhsot kilometrov [Low-orbit spacecraft for highly detailed observation with a long lifetime in working orbits with an altitude below four hundred kilometers]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2021, iss. 12. https://doi.org/10.18698/2308-6033-2021-12-2135
[9] Kurenkov V.I. Osnovy proektirovaniya kosmicheskikh apparatov optiko-elektronnogo nablyudeniya poverkhnosti Zemli. Raschet osnovnykh kharakteristik i formirovanie proektnogo oblika [Fundamentals of designing spacecraft for optical-electronic observation of the Earth surface. Calculation of the main characteristics and formation of the design appearance]. Samara, Samara University Publ., 2020, 461 p. ISBN 978-5-7883-1572-0
[10] Chernov A.A., Chernyavskiy G.M. Orbity sputnikov distantsionnogo zondirovaniya Zemli. Lektsii i uprazhneniya [Orbits of Earth remote sensing satellites. Lectures and exercises]. Moscow, Radio i Svyaz Publ., 2004, 200 p.
[11] Kurenkov V.I. Modeli dlya proektnoy otsenki massy opticheskoy apparatury nablyudeniya kosmicheskikh apparatov zondirovaniya Zemli [Models for design estimation of the mass of optical observation equipment for the Earth sensing spacecraft]. In: Upravlenie dvizheniem i navigatsiya letatelnykh apparatov: Sbornik trudov XXII Vserossiyskogo seminara po upravleniyu dvizheniem i navigatsii letatelnykh apparatov: Chast I. (g. Samara, 13–14 iyunya 2019 g.) [Motion control and navigation of aircraft: Collection of proceedings of the XXII All-Russian seminar on motion control and navigation of aircraft: Part I. (Samara, June 13–14, 2019)]. Samara, Samara Federal Research Centre RAS Publ., 2020, pp. 98–102.
[12] Sobolev I.A. Postroenie gruppirovki nizkoorbitalnykh kosmicheskikh apparatov [Constructing a constellation of the low-orbit spacecraft]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2024, iss. 2. https://doi.org/10.18698/2308-6033-2024-2-2337
[13] Sentsov Yu.I., Khmelshchikov M.V. Zavisimost vesa kosmicheskogo apparata distantsionnogo zondirovaniya Zemli ot prostranstvennogo razresheniya syemochnoy apparatury [The dependence between the weight of the Earth remote sensing spacecraft and the spatial resolution of imaging equipment]. Journal “Vestnik NPO im. S.A. Lavochkina”, 2015, no. 2, pp. 81–88.