Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Analysis of the spacecraft protective structures resistance to high-speed impact of the orbital debris aluminum particles

Published: 30.03.2024

Authors: Kolpakov V.I., Fedorov S.V., Vinogradova E.P.

Published in issue: #3(147)/2024

DOI: 10.18698/2308-6033-2024-3-2344

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

Today, the problem of protecting spacecraft from the impact of the space debris particles could only be solved through introduction of the protective shields. However, due to the mass and size restrictions imposed on a spacecraft, it is currently impossible to create a shield protection system that would completely eliminate the meteoroid risks. This work is based on numerical simulation using the ANSYS/AUTODYN program within the framework of two-dimensional axisymmetric problems of continuum mechanics. It presents a comparative effectiveness assessment of protective properties of the identical in mass single-layer protection made of aluminum alloy Al 6061-T6 and the two-layer protection representing a bumper (shield) made of variety of materials including reactive, porous and composite materials with a gap and a rear (main) aluminum wall (casing). The simulation process refined the interacting materials destruction criteria and the limiting ballistic curves of the considered barriers. Moreover, the aluminum bumper negative influence degree on the penetration nature of the rear aluminum wall of a two-layer barrier was revealed, and higher durability of protective structures using bumpers made of reaction or porous and composite materials was shown, compared to structures using the aluminum bumpers.

EDN ZADXPY


References
[1] Veniaminov S.S., Chervonov A.M. Kosmicheskiy musor — ugroza chelovechestvu [Space debris is a threat to humanity]. Moscow, IKI RAN Publ., 2012, 192 p.
[2] Shustov B.M. O fundamentalnykh issledovaniyakh po probleme kosmicheskogo musora [On fundamental research on the problem of space debris]. In: Vserossiyskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem “Kosmicheskiy musor: fundamentalnye i prakticheskie aspekty ugrozy [All-Russian scientific conference with international participation “Space debris: fundamental and practical aspects of the threat”]. Moscow, IKI RAN Publ., 2019, pp. 7–14.
[3] Nazarenko A.I. Modelirovanie kosmicheskogo musora [Space debris simulation]. Moscow, IKI RAN Publ., 2013, 216 p.
[4] Novikov L.S. Vozdeystvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty [Impact of particulate matter of natural and artificial origin on the spacecraft]. Moscow, Universitetskaya Kniga Publ., 2009, 104 p.
[5] Zelentsov V.V. Problemy melkogo kosmicheskogo musora [Problems of small debris]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie MGTU im. N.E. Baumana — Science and Education. Scientific Edition of Bauman MSTU, 2015, no. 4, pp. 89–104. https://doi.org/10.7463/0415.0764904
[6] Zelentsov V.V. Zashchita kosmicheskogo apparata ot vozdeystviya fragmentov melkogo kosmicheskogo musora [Protecting spacecraft fragments from exposure to small debris]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie MGTU im. N.E. Baumana — Science and Education. Scientific Edition of Bauman MSTU, 2015, no. 6, pp. 123–142. https://doi.org/10.7463/0615.0778339
[7] Christiansen E.L. Meteoroid/Debris Shielding. NASA TP-2003-210788 Johnson Space Center, Houston, Texas (USA), 2003, 99 p.
[8] Christiansen E.L. Handbook for Designing MMOD Protection. NASA JSC-64399 (Version A) Johnson Space Center, Houston, Texas (USA), 2009, 135 p.
[9] Christiansen E.L. Design and performance equations for advanced meteoroid and debris shield. International Journal of Impact Engineering, 1993, vol. 14, pp. 145–156.
[10] Whipple FL. Meteorites and space travel. Astron J., 1947, vol. 52, pp. 132–137.
[11] Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Udarno-volnovye yavleniya v kondensirovannykh sredakh [Shock wave phenomena in condensed media]. Moscow, Janus-K Publ., 1996, 408 p.
[12] Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Eksperimentalnye profili udarnykh voln v kondensirovannykh veshchestvakh [Experimental profiles of shock waves in the condensed matter]. Moscow, FIZMATLIT Publ., 2008, 248 p.
[13] Orlenko L.P., ed. Fizika vzryva [Physics of explosion]. In 2 vols. Vol. 2. 3rd ed., rev. Moscow, Fizmatlit Publ., 2004, 656 p.
[14] Fomin V.M., ed. Vysokoskorostnoe vzaimodeystvie tel [High-speed interaction between bodies]. Novosibirsk, SO RAN Publ., 1999, 600 p.
[15] Wen K., Chen X.-w., Lu Y.-g. Research and development on hypervelocity impact protection using Whipple shield: An overview. Defense Technology, 2021, vol. 17, pp. 1864–1886.
[16] Gerasimov A.V., ed. Vysokoskorostnoy udar. Modelirovanie i eksperiment [High-speed impact. Simulation and experiment]. Tomsk, NTL Publ., 2016, 568 p.
[17] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. New York, John Wiley & Sons Inc., 1989, 389 p.
[18] Kolpakov V.I. Matematicheskoe modelirovanie funktsionirovaniya vzryvnykh ustroystv [Mathematical simulation of the explosive devices’ performance]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie MGTU im. N.E. Baumana — Science and Education. Scientific Edition of Bauman MSTU, 2012, no. 2, pp. 1–36. Available at: http://technomag.edu.ru/doc/334177.html
[19] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Numerical methods in problems of physics of fast processes]. 3rd ed., rev. Moscow, BMSTU Publ., 2021, 370 p.
[20] Silnikov M.V., Guk I.V., Nechunaev A.F., Smirnov N.N. Numerical simulation of hypervelocity impact problem for spacecraft shielding elements. Acta Astronautica, 2018, vol. 150, pp. 56–62.
[21] Zhernokletov M.V., ed. Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh: Monografiya. [Methods for studying the properties of materials under intense dynamic loads: Monograph]. 2nd ed. enl. and rev. Sarov, FGUP “RFYaTs–VNIIEF”, 2005, 428 p.
[22] AUTODYN theory manual revision. Century Dynamics Inc. California, USA, 2005, 235 p.
[23] Fortov V.E., ed. Udarnye volny i ekstremalnye sostoyaniya veshchestva [Shock waves and extreme states of matter]. Moscow, Nauka Publ., 2000, 425 p.
[24] Malkin A.I., Zanozin V.M., Kononenko M.M., Toporov Yu.P., Shumikhin T.A., Tsivadze A.Yu. Novaya kontseptsiya zashchity kosmicheskikh apparatov ot mikrometeoroidov i orbitalnogo musora [New concept for protecting spacecraft from micrometeoroids and orbital debris]. Doklady Akademii nauk, 2011, vol. 436, no. 4, pp. 470–473.
[25] Burylov L.S., Kopyl N.I., Obyedkov M.L., Pepelin V.S., Abashkin B.I., Buslov E.P., Semenov V.I., Feldshtein V.A. Zashchitnyi ekran kosmicheskogo apparata ot udarov tekhnogennykh chastits i meteoroidov [Spacecraft protective shield from impacts of technogenic particles and meteoroids]. Patent of Russia RU 2591127 C2 (Application 2014135762/11, September 3, 2014), 2016, bull. 19, 6 p.