Constructing a constellation of the low-orbit spacecraft
Authors: Sobolev I.A.
Published in issue: #2(146)/2024
DOI: 10.18698/2308-6033-2024-2-2337
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper considers Earth coverage by swaths of the optical equipment installed onboard the Earth remote sensing spacecraft positioned in the ultra-low orbits at the altitude range of 200–300 kilometers. Possible orbital parameters were analyzed, and characteristics of the orbits were selected in accordance with the requirements to the coverage ratio and the spacecraft elevation angle above the horizon in vicinity to the swath boundary. Relationship was analyzed between the Earth’s surface coverage characteristics, realized orbital parameters and main characteristics of the spacecraft optoelectronic equipment. Based on the results obtained, options for constructing constellations of the ultra-low-orbit Earth remote sensing spacecraft were presented. In addition, based on results of assessing the weight and size characteristics of the onboard optoelectronic equipment, boundary of the required image spatial resolution is shown, as it determines feasibility of creating a constellation of the Earth remote sensing spacecraft in the ultra-low orbits.
EDN VSZKZS
References
[1] Kosmicheskie snimki sverkhvysokogo razresheniya [Ultra-high resolution satellite images]. Available at: https://innoter.com/articles/kosmicheskie-snimki-sverkhvysokogo-razresheniya (accessed November 23, 2023).
[2] Garbuk S.V., Gershenzon V.E. Kosmicheskie sistemy distantsionnogo zondirovaniya Zemli [Space systems for the Earth remote sensing]. Moscow, A i B Publ., 1997, 296 p.
[3] Obnovlenie parka sputnikov opticheskoy razvedki Rossii [Updating the Russian optical reconnaissance satellite fleet]. Available at: https://sovzond.ru/press-center/news/dzz/7571/ (accessed November 27, 2023).
[4] Zaichko V.A., Shvedov D.O., Kutumov A.A. O sostoyanii i razvitii rossiyskoy gosudarstvennoy kosmicheskoy sistemy distantsionnogo zondirovaniya Zemli [On the state and development of the Russian state space system for the Earth remote sensing]. Distantsionnoe zondirovanie Zemli iz kosmosa v Rossii. Sbornik informatsionnykh materialov. Nauchno-prakticheskiy zhurnal — Remote sensing of the Earth from space in Russia. Collection of information materials. Scientific and practical journal, 2022, iss. 2, pp. 6–17.
[5] Pantenkov D.G., Gusakov N.V., Lomakin A.A. Obzor sovremennogo sostoyaniya orbitalnykh gruppirovok kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli i kosmicheskikh retranslyatorov. Obzornaya statya [Review of the current state of the orbital groups of remote sensing spacecraft and information relay spacecraft. Review article]. Izvestiya Vysshikh Uchebnykh Zavedenii. Elektronika — Proceedings of Universities. Electronics, 2022, vol. 27, no. 1, pp. 120–149. https://doi.org/10.24151/1561-5405-2022-27-1-120-149
[6] Baklanov A.I., Blinov V.D., Gorbunov I.A., Zabiyakin A.S., Malakhov I.A. Apparatura vysokogo razresheniya dlya perspektivnogo kosmicheskogo apparata “Resurs-PM” [High-resolution equipment for the future spacecraft “Resourse-PM”]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika S.P. Koroleva (natsionalnogo issledovatelskogo universiteta) — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2016, vol. 15, no. 2, pp. 30–35. https://doi.org/10.18287/2412-7329-2016-15-2-30-35
[7] GOST 25645.101–86. Atmosfera Zemli verkhnyaya. Model plotnosti dlya proektnykh ballisticheskikh raschetov iskusstvennukh sputnikov Zemli [Earth upper atmosphere. Density model for project ballistic computations of artificial Earth satellites]. Moscow, 1983, 168 p.
[8] Volotsuev V.V., Salmin V.V. Analiz effektivnosti ispolzovaniya elektroreaktivnykh dvigateley dlya podderzhaniya nizkoy orbity malogo kosmicheskogo apparata [An analysis of the efficiency of electric propulsion engines for maintaining a low orbit of a small spacecraft]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie – BMSTU Journal of Mechanical Engineering, 2020, no. 10, pp. 65–74. https://doi.org/10.18698/0536-1044-2020-10-65-74
[9] Baklanov A.I. Novye gorizonty kosmicheskikh sistem optiko-elektronnogo nablyudeniya Zemli vysokogo razresheniya (chast II) [New horizons of high-resolution optical-electronic Earth observation space systems (Part II)]. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy — Rocket and Space Instrumentation and Information Systems, 2018, vol. 5, iss. 4, pp. 14–27.
[10] Chernov A.A., Chernyavsky G.M. Orbity sputnikov distantsionnogo zondirovaniya Zemli. Lektsii i uprazhneniya [Orbits of the Earth remote sensing satellites. Lectures and exercises]. Moscow, Radio i Svyaz Publ., 2004, 200 p.
[11] Volotsuev V.V. Nizkoorbitalnye kosmicheskie apparaty vysokodetalnogo nablyudeniya s dlitelnym srokom sushchestvovaniya na rabochikh orbitakh vysotoy nizhe chetarekhsot kilometrov [Low-orbit spacecraft for highly detailed observation with a long lifetime in working orbits with an altitude below four hundred kilometers]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2021, iss. 12. https://doi.org/10.18698/2308-6033-2021-12-2135
[12] Kurenkov V.I. Modeli dlya proektnoy otsenki opticheskoy apparatury zondirovaniya Zemli [Models for design estimation of the optical observation equipment mass for the Earth sensing spacecraft]. In: Upravlenie dvizheniem i navigatsiya letatelnykh apparatov. Sbornik trudov XXII Vserossiyskogo seminara po upravleniya dvizheniem i navigatsii letatelnykh apparatov: Chast 1. Samara, 13–14 iyunya 2019 g. [Traffic control and navigation of the aircraft: Collection of proceedings of the XXII All-Russian seminar on traffic control and navigation of the aircraft: Part I. (Samara, June 13–14, 2019)]. Samara, Samara Federal Research Centre of RAS Publ., 2020, pp. 98–102.