Design analysis of the reinforced composite shell
Authors: Egorov A.V., Egorov V.N.
Published in issue: #9(141)/2023
DOI: 10.18698/2308-6033-2023-9-2302
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper formulates the design calculation problem of a reinforced composite shell as a related problem of two shells — the layered and the lattice (ribbed). The layered shell is formed by a single double-helical monolayer; the lattice shell is made up of longitudinal and transverse ribs. The reinforced shell continuum model is based on a stiffness matrix equal to the sum of stiffness matrices of the quasi-homogeneous layered and ribbed shells, which are rigidly connected to each other and are deformed without slipping. External axial load between the two shells is distributed under the static conditions. The shells’ thickness is determined from the strength condition. The layered skin winding angle is found through iterations in achieving the goal function, for example, the minimum mass of a structure. The ribs transverse dimensions are found from the strength condition with preliminary setting of one of the ribs’ parameters. The obtained relationships make it possible to determine the stress-strain state of reinforced composite cylindrical shells.
References
[1] Azarov A.V. Raschet i optimizatsiya integralnykh setchatykh kompozitnykh konstruktsiy kosmicheskikh apparatov. Dis. ... d-ra techn nauk [Calculation and optimization of integral lattice composite structures of spacecraft. Diss. … Dr. Sc. (Eng.)]. Moscow, BMSTU Publ., 2022, 357 p.
[2] Vasiliev V.V., Nikityuk V.A., Razin A.F., Fedorov V.V. O vliyanii uglov orientatsii spiralnykh reber na peremescheniya konicheskoy i tsilindricheskoy setchatykh obolochek [On the influence of spiral ribs orientation angles on the movements of conical and cylindrical lattice shells]. Voprosy oboronnoy tekhniki. Ser. 15. Kompozitnye nemetalliskie materialy v mashinostroenii — Issues of defense technology. Ser. 15. Composite non-metallic materials in mechanical engineering, 2012, issues 1 (164)–2 (165), pp. 3–12.
[3] Shatov A.V. Modelirovanie deformativnosti kompozitnykh setchatykh tsilindricheskikh korpusov kosmicheskikh apparatov. Dis. ... kand. fiz.-mat. nauk [Modeling deformability of the composite mesh cylindrical bodies of spacecraft. Diss. … Cand. Sc. (Phys.-Math.)]. Tomsk, 2016, 147 p.
[4] Burnysheva T.V. Razrabotka i primenenie metodologii vychislitelnogo eksperimenta pri raschete i diagnostike anizogridnykh konstruktsiy kosmicheskikh letatelnykh apparatov. Dis. ... d-ra tekhn. nauk [Development and application of computational experiment methodology in calculation and diagnostics of anisogrid structures of spacecraft. Diss. … Dr. Sc. (Eng.)]. Novokuznetsk, 2017, 451 p.
[5] Kondakov I.O. Issledovaniya staticheskoy i udarnoy prochnosti setchatykh kompozitnykh konstruktsiy fyuzelyazha. Dis. ... kand. tekhn. nauk [Studies of static and impact strength of the mesh composite fuselage structures. Diss. … Cand. Sc. (Eng.)]. Zhukovsky, 2020, 138 p.
[6] Samipur S.A. Proektirovanie i tekhnologiya izgotovleniya setchatykh konstruktsiy letatelnykh apparatov s pletenoy sistemoy armirovaniya. Dis. ... kand. tekhn. nauk [Design and manufacturing technology of mesh structures of aircraft with a woven reinforcement system. Diss. … Cand. Sci. (Eng.)]. Kazan, 2018, 134 p.
[7] Lopatin A.V., Morozov E.V., Shatov A.V. An analytical expression for fundamental frequency of the composite lattice cylindrical shell with clamped edge. Composite Structures, 2016, vol. 141, pp. 232–239. https://doi.org/10.1016/j.compstruct.2016.01.053
[8] Taghavian H., Bassaki S. Analysis of composite rims. Journal of Automotive and Applied Mechanics, 2013, vol. 1, issue 1, 10 p.
[9] Zheng Q., Ju S., Jiang D. Anisotropic mechanical properties of diamond lattice composites structures. Composite Structures, 2014, vol. 109 (1), pp. 23–30. https://doi.org/10.1016/j.compstruct.2013.10.053
[10] Yazdani S., Rahimi G.H. Experimental and numerical stress analysis of glass fiber-reinforced polymer (GFRP)-stiffened shells with cutout under axial loading. Scientific Research and Essays, 2013, vol. 8 (21), pp. 902–916.
[11] Vasiliev V.V., Nikityuk V.A., Razin A.F., Fedorov V.V. O vliyanii uglov orientatsii spiralnykh reber na peremescheniya konicheskoy i tsilindricheskoy setchatykh obolochek [On the influence of spiral ribs orientation angles on the movements of conical and cylindrical mesh shells]. Voprosy oboronnoy tekhniki. Ser. 15. Kompozitnye nemetalliskie materialy v mashinostroenii — Issues of defense technology. Ser. 15. Composite non-metallic materials in mechanical engineering, 2012, issues 1 (164)–2 (165), pp. 3–7.
[12] Weber M.J., Middendorf P. Semi-analytical skin buckling of curved orthotropic grid-stiffened shells. Composite structures, 2014, no. 108, pp. 616–624. https://doi.org/10.1016/j.compstruct.2013.09.031
[13] Xu Y., Yan T., Liu M., Suman B. A new effective smeared stiffener method for global buckling analysis of grid stiffened composite panels. Composite structures, 2016, vol. 158, pp. 83–91. https://doi.org/10.1016/j.compstruct.2016.09.015
[14] Ghahfarokhi D.S., Rahemi G. An analytical approach for global buckling of composite sandwich cylindrical shells with lattice cores. International Journal of Solids and Structures, 2018, vol. 146, pp. 69–79. https://doi.org/10.1016/j.ijsolstr.2018.03.021
[15] Han Y., Wang P., Fan H., Sun F., Chen L., Fang D. Free vibration of CFRC lattice-core sandwich cylinder with attached mass. Composite Science and Technology, 2015, vol. 118, pp. 226–235. https://doi.org/10.1016/j.compscitech.2015.09.007
[16] Zhang B., Jin F., Zhao Z., Zhou Z., Xu Y., Chen H., Fan H. Hierarchical anisogrid stiffened composite panel subject to blast loading: Equivalent theory. Composite structures, 2018, vol. 187, pp. 259–268. https://doi.org/10.1016/j.compstruct.2017.12.059
[17] Lopatin A.V., Morozov E.V., Shatov A.V. Axial vibrations of a composite anisogrid lattice cylindrical shell with end masses. Composite structures, 2017, vol. 176, pp. 1143–1151. https://doi.org/10.1016/j.compstruct.2017.06.001
[18] Razin A.F., Skleznev A.A. Zavisimost nesuschey sposobnosti anizogridnykh kompozitnykh struktur ot geometrii reber [Dependence of the load-bearing capacity of anisogrid composite structures on the geometry of the ribs]. Voprosy oboronnoy tekhniki. Ser. 15. Kompozitnye nemetalliskie materialy v mashinostroenii — Issues of defense technology. Ser. 15. Composite non-metallic materials in mechanical engineering, 2018, issue 185, pp. 3–5.
[19] Alashti R.A., Latifi Rostami S.A., Rahimi G.H. Buckling analysis of composite lattice cylindrical shells with ribs defects. Int. Journal of Engineering, 2013, vol. 26, no. 4, pp. 411–420. https://doi.org/10.5829/idosi.ije.2013.26.04a.10
[20] Zheng Q., Jiang D., Huang C., Shang X., Ju S. Analysis of failure loads and optimal design of composite lattice cylinder under axial compression. Composite Structures, 2015, vol. 131, pp. 885–894. https://doi.org/10.1016/j.compstruct.2015.06.047
[21] Belardi V.G., Fanelli P., Vivio F. Design, analysis and optimization of anisogrid composite lattice conical shells. Composites Part B: Engineering, 2018, no. 150, pp. 184–195. https://doi.org/10.1016/j.compositesb.2018.05.036
[22] Chen L., Zhang J., Du B., Zhou H., et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin-Walled Structures, 2018, no. 127, pp. 333–343. https://doi.org/10.1016/j.tws.2017.10.048
[23] Moeinifard M., Liaghat G., Rahimi G., Talezadehlari A., Hadavinia H. Experimental investigation on the energy absorption and contact force of unstiffened and grid-stiffened composite cylindrical shells under lateral compression. Composite Structures, 2016, no. 152, pp. 626–636. https://doi.org/10.1016/j.compstruct.2016.05.067
[24] Kim Y., Kim I., Park J. An approximate formulation for the progressive failure analysis of a composite lattice cylindrical panel in aerospace applications. Aerospace Science and Technology, 2020, pp. 1–17.
[25] Li M., Lai C., Zheng Q., Fan H. Multi-failure analysis of carbon fiber reinforced anisogrid lattice cylinders. Aerospace Science and Technology, 2020, vol. 100, pp. 1–14. https://doi.org/10.1016/j.ast.2020.105777
[26] Usyukin V.I. Stroitelnaya mekhanika konstruktsiy kosmicheskoy tekhniki [Construction mechanics of space technology structures]. Moscow, Mashinostroenie Publ., 1988, 392 p.
[27] Sarbaev B.S. Raschet silovoy obolochki kompozitnogo ballona davleniya [Calculation of the strength shell of a composite pressure cylinder]. Moscow, BMSTU Publ., 2001, 96 p.