Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Design parameters evaluation of the IoT 5G information satellites constellation

Published: 20.07.2023

Authors: Shcheglov G.A., Taratonkina V.S.

Published in issue: #7(139)/2023

DOI: 10.18698/2308-6033-2023-7-2289

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper presents technique for evaluating design parameters of a satellite constellation operating on the Internet-of-Things principle and making it possible to determine the impact on the constellation general design parameters on characteristics of the fifth generation 5G communication technology used in data transmission between spacecraft, as well as in communication between a spacecraft and the ground stations. Examples of the satellite communication constellation with the data transfer rate of 24 Gbit/s operating in circular orbits with the height of 1000 km are considered. It is shown that the upper limiting parameter for selecting the signal transmission frequency from the satellite to the Earth is the spacecraft power consumption, and the lower limits are the data transfer rate and the signal level. Besides, it is necessary to consider the antenna gain, which depends on the signal transmission frequency and has limitations. Results of studying dependence of the distance between the satellites in the Earth orbit constellation on the power consumed on board the spacecraft are presented. It is shown that with an increase in the number of satellites in constellation and due to a decrease in the onboard equipment power, the mass of a single spacecraft would decrease by 1.4 times. However, total mass of the constellation grows by almost 1.5 times, which potentially increases the project total cost.


References
[1] Oztemel E., Gursev S. Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 2020, vol. 31, pp. 127–182. https://doi.org/10.1007/s10845-018-1433-8
[2] Schwab K. The Fourth Industrial Revolution. Geneva, World Economic Forum, 2016, 172 p. URL: https://law.unimelb.edu.au/__data/assets/pdf_file/0005/3385454/Schwab-The_Fourth_Industrial_Revolution_Klaus_S.pdf (accessed October 12, 2022).
[3] Riedl M., Zipper H., Meier M., Diedrich C. Cyber-physical systems alter automation architectures. Annual Reviews in Control, 2014, vol. 38 (1). Available at: https://www.researchgate.net/publication/261717202_Cyber-physical_systems_alter_automation_architectures (accessed October 15, 2022).
[4] Rosas J., Aguilar J. A., Tripp-Barba C., Espinosa R., Aguilar P. A mobile-sensor fire prevention system based on the internet of things. Computational Science and Its Applications – ICCSA 2017, 2017, vol. 10409, pp. 274–283. Available at: https://link.springer.com/chapter/10.1007/978-3-319-62407-5_19 (accessed October 17, 2022).
[5] Smyshlyaeva A.A., Reznikova K.M., Savchenko D.V. Modern technologies in Industry 4.0 — cyber-physical systems. Russian Journal of Resources, Conservation and Recycling, 2020, no. 3, vol. 7. DOI: 10.15862/02INOR320 Available at: https://resources.today/PDF/02INOR320.pdf (in Russian). (accessed October 17, 2022).
[6] Al-Ali A.R., Gupta R., Nabulsi A.A. Cyber physical systems role in manufacturing technologies, 2018. Available at: https://aip.scitation.org/doi/pdf/10.1063/1.5034337 (accessed October 17, 2022).
[7] Nuñez D., Fernández G., Luna J. Cloud system. Procedia Computer Engineering, 2017, vol. 62, pp. 149–164.
[8] Biral A., Centenaro M., Zanella A., Vangelista L., Zorzi M. The challenges of M2M massive access in wireless cellular networks. Digital Communications and Networks, 2015, vol. 1 (1). Available at: https://www.researchgate.net/publication/274096594_The_challenges_of_M2M_massive_access_in_wireless_cellular_networks (accessed October 25, 2022).
[9] Acharjya D.P., Geetha M.K. Internet of Things: Novel Advances and Envisioned Applications. Springer, 2017, 311 p. (accessed October 2, 2022).
[10] Agentstvo promyshlennogo razvitiya Moskvy. Promyshlennyi internet veschey [Moscow Industrial Development Agency. Industrial Internet-of-Things]. Available at: https://apr.moscow/content/data/5/03%20Промышленный%20интернет%20вещей.pdf (accessed October 15, 2022).
[11] Rekomendatsii MSE-T Y.2060. Obzor interneta veschey [ITU-T Y.2060 Recommendations. Overview of the Internet-of-Things]. Available at: http://handle.itu.int/11.1002/1000/11559 (accessed October 05, 2022).
[12] Chto takoe IOT. Blog kompanii OTUS [What is IOT. OTUS blog]. Available at: https://habr.com/ru/company/otus/blog/549550/ (accessed October 2, 2022).
[13] 4 IOT connectivity challenges and strategies to tackle them. Available at: https://www.techtarget.com/iotagenda/feature/4-IoT-connectivity-challenges-and-strategies-to-tackle-them (accessed October 12, 2022).
[14] Seti 5G v Rossii — tekhnologiya i ee vnedrenie [5G networks in Russia – technology and its implementation]. Available at: https://5g-russia.ru/ (accessed November 12, 2022).
[15] Chto takoe 5G [What is 5G]. Available at: https://media.mts.ru/internet/196902-chto-takoe-5g/ (accessed November 12, 2022).
[16] Chastoty dlya 5G v Rossii [Frequencies for 5G in Russia]. Available at: https://www.tadviser.ru/index.php/Статья:Частоты_для_5G_в_России (accessed November 12, 2022).
[17] Chastota 5G setey v Rossii i v mire — vse diapazony [The 5G frequency networks in Russia and in the world — all ranges]. Available at: https://5g-russia.ru/chastota-5g-setej-v-rossii-i-v-mire-vse-diapazony (accessed November 12, 2022).
[18] Soret B., Leyva-Mayorga I., Röper M., Wübben D., Matthiesen B., Dekorsy A., Popovski P. LEO Small-Satellite Constellations for 5G and Beyond-5G Communications. IEEE Access, 2020, vol. 8, pp. 184955–184964. DOI: 10.1109/ACCESS.2020.3029620
[19] Kua J., Loke S.W., Arora C., Fernando N., Ranaweera C. Internet of Things in Space: A Review of Opportunities and Challenges from Satellite-Aided Computing to Digitally-Enhanced Space Living. Sensors, 2021, vol. 21 (23), art. ID 8117. https://doi.org/10.3390/s21238117.
[20] Shicong L., Zhen G., Yongpeng W., Derrick Wing Kwan N., Xiqi G., Kai-Kit W., Chatzinotas S., Ottersten B. LEO Satellite Constellations for 5G and Beyond: How will they reshape vertical domains, 2021. Available at: https://www.researchgate.net/publication/352559606_LEO_Satellite_Constellations_for_5G_and_Beyond_How_Will_They_Reshape_Vertical_Domains (accessed May 21, 2023).
[21] Leyva-Mayorga I., Soret B., Roper M., Wubben D., Matthiesen B., Dekorsy F., Popovski P. LEO Small-Satellite Constellations for 5G and Beyond-5G Communications. IEEE Access, 2020, vol. 8, pp. 184955–184964. https://doi.org/10.1109/ACCESS.2020.3029620 IEEE Xplore. Available at: https://ieeexplore.ieee.org (accessed September 20, 2022).
[22] Fei Q., Wenjing L., Yu P., Feng L., Fanqin Z. Shape adaptive IRS based SAG IoT network. https://doi.org/10.1186/s13638-021-02069-0 Available at: https://www.researchgate.net/publication/356785404_Shape_adaptive_IRS_based_SAG_IoT_network. (accessed May 21, 2023).
[23] Chien W.C., Lai C. F., Hossain M.S., Muhammad G. Heterogeneous Space and Terrestrial Integrated Networks for IoT: Architecture and Challenges. IEEE Network, 2019, vol. 33, no. 1, pp. 15–21. https://doi.org/10.1109/MNET.2018.1800182 IEEE Xplore. Available at: https://ieeexplore.ieee.org. (accessed May 20, 2023).
[24] Sanchez-Iborra R., Dolores Cano M. State of the Art in LP-WAN Solutions for Industrial IoT Services. Sensors, 2016, vol. 16 (5). Available at: https://www.researchgate.net/publication/303278583_State_of_the_art_in_LP-WAN_solutions_for_industrial_IoT_services (accessed May 21, 2023).
[25] LoRa Alliance. Available at: https://lora-alliance.org/ (accessed May 21, 2023).
[26] Zizung Y., Walter F., Klaus B. Design and implementation of a narrow-band intersatellite network with limited onboard resources for IoT. Sensors, 2019, vol. 19. Available at: https://www.researchgate.net/publication/336112890_Design_and_Implementation_of_a_Narrow-Band_Intersatellite_Network_with_Limited_Onboard_Resources_for_IoT (accessed May 5, 2023).
[27] Nguyen Duc Anh. Issledovanie tekhnologiy v nazemnykh setyakh LPWAN i ikh adaptatsiya dlya ispolzovaniya v sputnikovykh nizkoorbitalnykh sistemakh s tselevoy funktsiey interneta veschey. Dis. … kand. tekhn. nauk [Research of technologies in the land-based WAN networks and their adaptation for use in the satellite low-orbit systems with the Internet-of-Things target function. Diss. … Cand. Sc. (Eng.)]. Moscow, 2022, 109 p.
[28] Starlink & IoT: analyzing SpaceX’s acquisition of Swarm Technologies. Available at: https://starlinkinsider.com/starlink-iot/ (accessed May 22, 2023).
[29] SpaceX enters the IoT connectivity market with Swarm acquisition. Available at: https://www.edgeir.com/spacex-enters-the-iot-connectivity-market-with-swarm-acquisition-20210824 (accessed May 21, 2023).
[30] SpaceX launches world’s 1st 5G satellite to bring global connectivity to Internet of things. Available at: https://www.space.com/spacex-launches-1st-5g-satellite-internet-of-things (accessed May 22, 2023).
[31] Satellite Constellations. NewSpace Index. Available at: https://www.newspace.im/ (accessed May 22, 2023).
[32] Information on spaceflight, launch vehicles and satellites. Gunter’s Space Page. Available at: https://space.skyrocket.de/ (accessed May 22, 2023).
[33] Bordalo Monteiro J., Santos J., Antunes P., Guerman A., Jorge F. A review of small satellite constellations for IoT connectivity, 2022. Available at: https://www.researchgate.net/publication/364213241_A_review_of_small_satellite_constellations_for_IoT_connectivity (accessed May 04, 2023).
[34] Proekt “Sfera” perekhodit k prakticheskoy realizatsii [The Sphere project is moving to practical implementation]. Roscosmos. Available at: https://www.roscosmos.ru/33771/ (accessed May 22, 2023).
[35] Kosmicheskiy megabit po zemnoy tsene [Space megabit at the Earth price]. Roscosmos. Available at: https://www.roscosmos.ru/38467/#:~:text=«Скиф»%20—%20спутниковая%20группировка%2C%20предназначенная,передвигающиеся%20по%20Северному%20морскому%20пути (accessed May 20, 2023).
[36] Nizkoorbitalnaya mnogosputnikovaya sistema peredachi dannykh “Marafon IoT’ [Low-orbit multi-satellite data transmission system “Marathon IoT”]. Available at: https://docs.yandex.ru/docs/view?tm=1684590672&tld= ru&lang= ru&name=Marathon-IOt-2-Nov-02.11.2020.pdf (accessed May 20, 2023).
[37] ISS Reshetneva gotovitsya k “Sfere” [Information Satellite Systems Reshetnev is preparing for the “Sphere”]. Roscosmos. Available at: https://www.roscosmos.ru/32331/ (accessed May 21, 2023).
[38] TUSUR vklyuchilsya v rabotu nad sputnikami dlya razvitiya interneta veschey [Tomsk State University of Control Systems and Radioelectronics joined the work on satellites to development the Internet-of-Things]. Available at: https://tusur.ru/ru/novosti-i-meropriyatiya/novosti/prosmotr/-/novost-tusur-vklyuchilsya-v-rabotu-nad-sputnikami-dlya-razvitiya-interneta-veschey (accessed May 21, 2023).
[39] Internet veschey iz kosmosa [Internet-of-Things from the outer space]. Available at: https://rspectr.com/articles/internet-veshhej-iz-kosmosa (accessed May 21, 2023).
[40] Narayanasamy A., Yasser A., Othman M. Nanosatellites constellation as an IoT communication platform for near equatorial countries, 2017. Available at: https://www.researchgate.net/publication/320915539_Nanosatellites_constellation_as_an_IoT_communication_platform_for_near_equatorial_countries (accessed May 5, 2023).
[41] Link budget. Available at: https://en.wikipedia.org/wiki/Link_budget (accessed December 10, 2022).
[42] Rasprostranenie radiovoln [Radio waves propagation]. Available at: https://wl.unn.ru/materials/courses/wlnet/Lect/2_Lect_1_2.pdf (accessed March 27, 2023).
[43] Dubrovin V.S., Kolesnikova I.V. K raschetu parabollicheskoy antenny dlya sverkhshirokopolosnykh sistem radiodistupa [On calculation of the parabolic antenna for ultra-wideband radio access systems]. Elektronika i informatsionnye tekhnologii — Electronics and Information Technologies, 2009, no. 2 (7), pp. 19–29.
[44] Radiotekhnika: ot istokov do nashikh dney [Radio engineering: from the origins to the present day]. Available at: https://studref.com/674340/tehnika/radiosvyaz_dalnim_kosmosom (accessed December 4, 2022).
[45] Koeffitsient usileniya i chustvitelnost [Gain and sensitivity]. Available at: https://helpiks.org/7-89097.html (accessed December 6, 2022).
[46] Moschnost signala i radius raboty [Signal strength and range]. Available at: https://urouter.ru/how-it-works/signal-strength-and-range.html (accessed December 4, 2022).
[47] Predvaritelnyi raschet RPU. Raschet trebuemoy impulsnoy moschnosti RPU i koeffitsienta usileniya antenny [Radio receiver preliminary calculation. Radio receiver required pulse power and antenna gain calculation]. Available at: https://studbooks.net/2371019/tehnika/predvaritelnyy_raschet_raschet_trebuemoy_impulsnoy_moschnosti_koeffitsienta_usileniya_antenny (accessed December 10, 2022).
[48] Tumanov A.V., Zelentsov V.V., Shcheglov G.A. Osnovy komponovki bortovogo oborudovaniya kosmicheskikh apparatov [Fundamentals of layout of the spacecraft onboard equipment]. Moscow, BMSTU Publ., 2018, 572 p.
[49] Zelentsov V.V., Kazakovtsev V.P. Osnovy ballisticheskogo proektirovaniya iskusstevennykh sputnikov Zemli [Fundamentals of ballistic design of the artificial Earth satellites]. Moscow, BMSTU Publ., 2012, 174 p.
[50] Belyaev A.V., Zelentsov V.V., Shcheglov G.A. Sredstva vyvedeniya kosmicheskikh letatelnykh apparatov [Spacecraft launch vehicles]. Moscow, BMSTU Publ., 2007, 56 p.
[51] Metody peredachi dannykh na fizicheskom urovne informatsii [Methods of data transmission at the physical level of information]. Available at: https://studfile.net/preview/4034108/page:5/ (accessed March 11, 2023).
[52] Spectrolab. Available at: https://www.spectrolab.com/photovoltaics.html (accessed December 7, 2022).