Product thermal regime determination on the Moon surface taking into account the specular-diffuse reflection
Authors: Borschev N.O., Deniskina A.R., Emelyanov A.Yu.
Published in issue: #12(132)/2022
DOI: 10.18698/2308-6033-2022-12-2236
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper considers issues of calculating the thermal regime of a spacecraft on the Moon surface. A method for calculating the external radiant fluxes is provided for this case. Geographical position of the spacecraft on the Moon surface and the initial date were set as the initial data for calculation. The spacecraft thermal regime was calculated by the method of thermal balances on the Moon surface taking into account the specular-diffuse heat transfer for cases, where the nature of the outer surface reflection of the screen-vacuum thermal insulation (SVTI) is diffuse or specular. The calculation showed that the nature of reflection (specular or diffuse) of the SVTI outer surface for the case under consideration was not affecting the SVTI surface temperature and the spacecraft temperature, and its operating temperature ranged from 80 to 400 K.
References
[1] Cherenkov V.B. Avtomaticheskie planetnye stantsii [Automatic planetary stations]. Moscow, Nauka Publ., 1973.
[2] Selivanov A.S. Programma E6: Pervaya myagkaya posadka na Lunu i peredacha pervoy lunnoy panoramy [Program E6: First soft landing on the Moon and transmission of the first lunar panorama]. Raketno-kosmicheskoe pribrostroenie i informatsionnye sistemy — Rocket-Space Device Engineering and Information Systems, 2016, vol. 3, no. 3, pp. 98–99.
[3] Fedorenko G.M. Startovaya programma issledovaniya Luny E1 [The Start Program of the Moon Exploration Е1]. Raketno-kosmicheskoe pribrostroenie i informatsionnye sistemy — Rocket-Space Device Engineering and Information Systems, 2018, vol. 5, no. 3, pp. 97–101.
[4] Lapovok E.V., Khankov S.I. Vnutrenniy teplovoy rezhim baziruemogo na poverkhnosti Luny obyekta s vnutrennim termostatirovaniem [Stationary thermal regime of Moon-based object with internal thermostatic control]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroyenie — Journal of Instrument Engineering, 2014, vol. 57, no. 12, pp. 46–52.
[5] Kopyatkevich R.M., Gulya V.M., Tulin D.V., Shabarchin A.F. Teplovoe proektirovanie i pofragmentnaya nazemnaya otrabotka sistemy obespecheniya teplovogo rezhima kosmicheskogo apparata negermetichnogo ispolneniya na baze sotopaneley s teplovymi trubami [Thermal design and fragmented ground testing of a system for ensuring the thermal regime of a non-hermetic spacecraft based on honeycomb panels with heat pipes]. Kosmonavtika i raketostroenie (Cosmonautics and Rocket Science), 2010, iss. 3 (60), pp. 33–41.
[6] Panin Yu.V., Antonov V.A., Balykin M.A. K voprosu o proektirovanii i ekspluatatsii TT v sostave STR posadochnykh moduley mezhplanetnykh stantsii dlya issledovaniya tel solnechnoy sistemy [About design and operation of heat pipes as part of the thermal control systems of the landing module of interplanetary stations for the study of the solar system bodies]. Vestnik NPO imeni S.A. Lavochkina — Bulletin of Lavochkin Association, 2021, no. 4, pp. 31–38.
[7] Gakal P.G., Ruzaykin V.I., Turna R.Yu., et al. Eksperimentalnyi stend dlya issledovaniya teplogidravlicheskikh protsessov v sisteme termoregulirovaniya telekommunikatsionnogo sputnika [Experimental stand for the study of thermohydraulic processes in the thermal control system of a telecommunications satellite]. Aviatsionno-kosmicheskaya tekhnika i tekhnologii — Aerospace Engineering and Technology, 2011, no. 5 (82), pp. 14–17.
[8] Idelchik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Handbook of hydraulic resistances]. Moscow, Mashinostroenie Publ., 1975.
[9] Nikonov A.A., Gorbenko G.A., Blinkov V.N., Teploobmennye kontury s dvukhfaznym teplonositelem dlya sistem termoregulirovaniya kosmicheskikh apparatov [Heat-exchange loops with a two-phase coolant for thermal control systems of spacecraft]. Moscow, TsNTI “Poisk” Publ., 1991. Series Raketno-kosmicheskaya tekhnika.
[10] Volodin Yu.G., Fedorov K.S., Yakovlev M.V. Koeffitsient teplootdachi v puskovom rezhime energeticheskoy ustanovki [Heat transfer coefficient in the starting mode of the power plant]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyenie — BMSTU Journal of Mechanical Engineering, 2007, no. 1, pp. 26–28.
[11] Zudin Yu.B. Vliyanie teplofizicheskikh svoystv stenki na koeffitsient teplootdachi [The influence of the thermophysical properties of the wall on the heat transfer coefficient]. Teploenergetika — Thermal Engineering, 1998, no. 3, pp. 31–33.
[12] Knyazev V.A., Nikulin K.S. Effekivnyi koeffitsient teplootdachi v ploskikh schelyakh s neodnorodnym obogrevom [Effective heat-transfer coefficient in a flat parallel-plates duct with inhomogeneous heating]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov (Problems of Atomic Science and Engineering. Series: Physics of Nuclear Reactors) — Physics of Atomic Nuclei, 2016, no. 1, pp. 56–64.
[13] Formalev V.F., Reviznikov D.L. Chislennye metody [Numerical methods]. Moscow, Fizmatlit Publ., 2004, 400 p.
[14] Formalev V.F. Analiz dvukhmernykh temperaturnykh poley v anizotropnykh telakh s uchetom podvizhnykh granits i bolshoy stepeni anizotropii [Analysis of two-dimensional temperature fields in anisotropic bodies with allowance for moving boundaries and a high degree of anisotropy]. Teplofizika Vysokikh Temperatur — High Temperature, 1990, vol. 28, no. 4, pp. 715–721.
[15] Formalev V.F. Identifikatsiya dvukhmernykh teplovykh potokov v anizotropnykh telakh slozhnoy formy [Identification of two-dimensional heat flows in complex anisotropic forms]. Inzhenerno-Fizicheskii Zhurnal — Journal of Engineering Physics and Thermophysics, 1989, vol. 56, no. 3, pp. 382–386.
[16] Zaletaev S.V., Kopyatkevich R.M. Programmnyi kompleks teplovogo proektirovaniya i analiz rezhimov kosmicheskikh apparatov [Software package of a thermal design and an analysis of spacecraft thermal conditions]. Kosmonavtika i raketostroenie (Cosmonautics and Rocket Science), 2014, no. 4 (77), pp. 84–91.