Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

On the use of highly porous aluminum alloys and cellular structures in the spacecraft landing devices

Published: 17.11.2022

Authors: Markov V.A., Popov Yu.V., Pusev V.I., Selivanov V.V.

Published in issue: #11(131)/2022

DOI: 10.18698/2308-6033-2022-11-2228

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper presents results of studying mechanical properties and shock-absorbing characteristics of the highly porous aluminum alloys and aluminum alloy cellular structures with the initial average density from 190 to 2250 kg/m3. The study is based on data from foreign publications and experimental results obtained by the authors. Diagrams of deformation are provided illustrating characteristic stages of the deformation process and compaction of the highly porous alloys and cellular structures made of the aluminum alloys. Highly porous alloys are identified, which deformation is close to the idealized. Based on the analysis of experimental data, presence of two groups of materials is shown: the first with deformation diagram without hardening at the compaction stage and the second with hardening. Basics for calculating specific and effective impact absorption energy are provided. Analogue shock absorbers are shown for characteristic stages of the deformation diagrams. Introduction of the effective impact absorption energy is proposed as a criterion to compare the shock absorbers with each other. The results obtained could be used in the development of the single shock absorbers.


References
[1] Petrov J.A., Makarov V.P., Kolobov A.Yu., Alyoshin V.F. Posadochnye ustroistva kosmicheskikh apparatov (KA) na osnove penoplastov i sotoblokov [Spacecraft’s landing devices on the basis of polyfoams and cellular designs ]. Nauka i obrazovanie. Elektronny nauchny zhurnal MGTU im. N.E. Baumana — Science and Education of Bauman MSTU, 2010, no. 4. Available at: http://technomag.edu.ru/doc/141542.html (accessed November 11, 2020).
[2] Glushko V.P., ed. Kosmonavtika. Entsiklopediya [Cosmonautics. Encyclopedia]. Moscow, Sov. Encyclopedia Publ., 1985, 528 p.
[3] Popov E.I. Spuskaemye apparaty [Descent vehicles]. Moscow, Znanie Publ., 1985, 64 p.
[4] Technical Report 32-1246 Surveyor V Mission Report. Part I. Mission Description and Performance. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1968. Available at: https://www.lpl.arizona.edu/sites/default/files/sic/surveyor/Surveyor_V_NASA-TechnicalReport32-1246_Part-1.pdf (accessed May 3, 2021).
[5] Surveyor Program-Results. NASA SP-184. Scientific and Technical Information Division. Office of Technology Utilization, National Aeronautics and Space Administration, Washington, D.C., 1969, 425 p. Available at: https://www.hq.nasa.gov/alsj/NASA-SP-184.pdf (accessed May 3, 2021).
[6] Apollo 11 Preliminary Science Report. NASA SP-214. Scientific and Technical Information Division. Office of Technology Utilization, National Aeronautics and Space Administration, Washington, D.C., 1969, 205 p. Available at: https://www.hq.nasa.gov/alsj/a11/as11psr.pdf (accessed May 3, 2021).
[7] Apollo operations handbook. Lunar module LM 10 and subsequent. Vol. 1 Subsystems data. LMA790-3-LM 10 and Subsequent. The National Aeronautics and Space Administration, 1971. Available at: https://www.hq.nasa.gov/alsj/LM10HandbookVol1.pdf (accessed May 3, 2021).
[8] Fortov V.E., Altshuler L.V., Trunin R.F., Funtikov A.I., ed. Udarnye volny i ekstremalnye sostoyaniya veschestva [Shock waves and extreme states of matter]. Moscow, Nauka Publ., 2000, 425 p.
[9] Zeldovich Ya.B., Raizer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of shock waves and high-temperature hydrodynamic phenomena]. Moscow, Nauka Publ., 1966, 686 p.
[10] Altman M.B., Borok B.A., Merkulov V.A. et al. Litye zagotovki iz penistogo aluminiya [Cast blanks from foamy aluminium]. In: Friedlander I.N., ed. Alyuminievye splavy [Aluminum alloys]. Moscow, Oborongiz Publ., 1963, no. 1, pp. 41–49.
[11] Primenenie penoobraznogo alyuminiya v kosmicheskom korablestroenii [The use of foam aluminum in space shipbuilding]. Translated from English, 64/13628. Moscow, GPNTB Publ., 1964, 9 p.
[12] Sionoya S. Poristyi alyuminiy i ego primenenie [Porous aluminum and its application]. Translated from Japanese, 74/11416-B. Moscow, GPNTB Publ., 1973, 11 p.
[13] Preface. Proc. 1st Int. Conf. of Met. Foams and Porous Met. Struct. Bremen (Germany), 14–16 June 1999 (MetFoam ‘99). Bremen, 1999, P. 1–5.
[14] Gusarov A.P., Zharikov A.V., Markov V.A., Ovchinnikov A.F., Pusev V.I., Selivanov V.V. Eksperimentalnaya otsenka opredelyauschikh uravneniy vysokoporistykh metallov [Experimental evaluation of the determining equations for highly porous metals]. In: Sb. nauchn. trudov XIV Mezhdunarodnogo simpoziuma «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsiy i sploshnyh sred» imeni professora A.G. Gorshkova [Collection of scientific works of the Professor A.G. Gorshkov XIV International symposium “Dynamic and technological problems of mechanics of structures and continuous media”, Yaropolets, February 18–22, 2008]. Moscow, MAI Publ., 2008, vol. 2, pp. 72–83.
[15] Ashby M.F., Tianjian L. Metal foams: a survey. Sci. of China. Ser. B, 2003, vol. 46, no. 6, pp. 522–532.
[16] Öchner A., Kuhn G., Gracio G. Investigation of cellular solids under biaxial stress strain. Exp. Mech, 2005, vol. 45, no, 4, pp. 325–330.
[17] Gusarov A.P., Zharikov A.V., Markov V.A., Ovchinnikov A.F., Pusev V.I., Selivanov V.V., Soobshchikov A.N. Mekhanicheskie i amortiziruyuschie svoistva vysokoporistogo yacheistogo aluminiya [Mechanical and shock absorbing properties of highly porous cellular aluminum]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2009, no. 1 (74), pp. 58–66.
[18] Gusarov A.P., Zharikov A.V., Markov V.A., Ovchinnikov A.F., Pusev V.I., Selivanov V.V., Soobshchikov A.N. O mekhanicheskikh i amortiziruyuschikh svoistvakh yacheistogo alyuminiya pri szhatii i vtorichnom nagruzhenii [On mechanical and shock absorbing properties of aluminum at compression and secondary loading]. In: Sb. nauchn. trudov XIV Mezhdunarodnogo simpoziuma «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsiy i sploshnyh sred» imeni professora A.G. Gorshkova [Collection of scientific works of the Professor A.G. Gorshkov XIV International symposium “Dynamic and technological problems of mechanics of structures and continuous media”. Yaropolets, February 16–20, 2009]. Moscow, PARADIZ Tipografiya Publ., 2009, vol. 2, pp. 84–93.
[19] Wei P., Liu L. Influence of density on compressive properties and energy absorption of foamed aluminium alloy. J. of Wuhan Univ. of Techn. Mater. Sci., 2007, vol. 22, no. 2, pp. 225–228.
[20] Zhao Y., Ma Ch., Xin D., Sun M. Dynamic mechanical properties of closed-cell aluminum foams with uniform and graded densities. Journal of Material Research, 2020, vol. 35, no. 19, pp. 2575–2586. https://doi.org/10.1557/jmr.2020.157
[21] Sun Yongle, Li Q.M. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. of Imp. Engng., 2018, vol. 112, pp. 74–115.
[22] Shen J., Lu G., Ruan D. Compressive behaviour of closed-cell aluminium foams at high strain rates. Composites. Part B: Engineering, 2010, vol. 41, no. 8, pp. 678–685.
[23] Thornton P.H., Magee C.L. The deformation of aluminium foams. Met. Trans. A, 1975, vol. 6A, no. 6, pp. 1253–1263.
[24] Ovchinnikov A.F., Pusev V.I., Gusarov A.P. Povedenie poristykh metallov pri uplotnenii [Porous metals behavior under compression]. Trudy MVTU No. 399. Mechanics of Pulse Processes. Moscow, 1983, pp. 29–35.
[25] Öchner A., Winter W., Kuhn G. Elastic-plastic behaviour of perforation aluminium under tension and compression. Tech. Mech., 2001, vol. 21, no. 2, pp. 101–108.
[26] Islam M.A., Brown A.D., Hazell P.J., Kader M.A., Escobedo J.P., Saadatfar M., Xu S., Ruan D., Turner M. Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading. Int. J. of Imp. Engng., 2018, vol. 114, pp. 111–122.
[27] Kader M.A., Islam M.A., Hazell P.J., Escobedo J.P., Saadatfar M., Brown A.D., Appleby-Thomas G.J. Modelling and characterization of cell collapse in aluminium foams during dynamic loading. Int. J. of Imp. Engng., 2016, vol. 96, pp. 78–88.
[28] Langdon G.S., Karagiozova D., Theobald M.D., Nurick G.N., Lu G., Merrett R.P. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading. Int. J. of Imp. Engng., 2010, vol. 37, pp. 638–651.
[29] Peroni M., Solomos G., Pizzinato V. Impact behaviour testing of aluminium foam. Int. J. of Imp. Engng., 2013, vol. 53, pp. 74–83.
[30] Gusarov A.P., Zharikov A.V., Markov V.A., Ovchinnikov A.F., Pusev V.I., Selivanov V.V., Soobshchikov A.N. Mat. O mekhanicheskikh i amortiziruyuschikh svoistvakh sotovykh konstruktsiy iz alyuminievykh splavov [On mechanical and shock absorbing properties of cellular structures made of aluminum alloys]. In: Sb. nauchn. tr. Vserossiyskoy nauchnoy konferentsii «Sovremennaya ballistika i smezhnye voprosy mekhaniki», posvyashchennoy 100-letiyu so dnya rozhdeniya professora M.S. Gorshkova. Tomsk, 17–19 noyabrya 2009 g. [Collection of scientific works of the All-Russian scientific conference “Modern ballistics and related questions of mechanics” devoted to Professor M.S. Gorshkov’s 100th birthday. Tomsk, November 17–19, 2009]. Tomsk, TSU Publ., 2010, pp. 209–210.
[31] Gusarov A.P., Zharikov A.V., Markov V.A., Ovchinnikov A.F., Pusev V.I., Selivanov V.V., Soobschikov A.N. Mekhanicheskie i amortiziruyuschie kharakteristiki sotovykh konstruktsiy iz alyuminievykh splavov [Mechanical and shock absorbing characteristics of cellular structures made of aluminum alloys]. In: Sb. nauchn. tr. XVI Mezhdunarodnogo simpoziuma «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsiy i sploshnyh sred» imeni A.G. Gorshkova, Yaropolets, 15–19 fevralya 2010 g. [Collection of scientific works of the Professor A.G. Gorshkov XVI International symposium “Dynamic and technological problems of mechanics of structures and continuous media”, Yaropolets, February 15–19, 2020]. Cheboksary, IPK Chuvashia Publ., 2010, vol. 2, pp. 153–159.
[32] Gibson L.J., Ashby M.F., Shajer G.S., Robertson C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. Pt. A382, London, 1982, pp. 25–42.
[33] Gibson L.J., Ashby M.F. The mechanics of three-dimensional cellular materials. Proc. R. Soc. Lond. Pt. A382, London, 1982, pp. 43–59.
[34] Baker W.E., Togami T.C., Weydert J.C. Static and dynamic properties of high-density metal honeycombs. Int. J. of Imp. Engng., 1998, vol. 21, no. 3, pp. 149–163.
[35] Odacı İ.K., Güden M., Kılıçaslan C., Taşdemirci A. The varying densification strain in a multi-layer aluminum corrugate structure: Direct impact testing and layer-wise numerical modelling. Int. J. of Imp. Engng., 2017, vol. 103, pp. 64–75.
[36] Xu S., Beynon J.H., Ruan D., Yu T.X. Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression. Int. J. of Imp. Engng., 2012, vol. 47, pp. 1–13.
[37] Sun Yongle, Li Q.M. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. of Imp. Engng., 2018, vol. 112, pp. 74–115.
[38] Nikolsky L.N., Keglin B.G. Amortizatory udara podvizhnogo sostava [Rolling stock shock absorbers]. Moscow, Mashinostroenie Publ., 1986, 144 p.