Simulation in the aerospace industry: review of technologies, methods and prospects of their use in future industries
Authors: Kabanov A.A.
Published in issue: #10(130)/2022
DOI: 10.18698/2308-6033-2022-10-2220
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper presents a review of modern technologies used today to various degrees in simulating the production activity. The emphasis is primarily made on production in aviation, space and rocket industries. The work objective is to develop approaches to introduction of technologies in practice today without waiting for the final formation of their implementation environment, which in most cases requires serious preparation, fundamental changes and long-term implementation. Without them, the use is becoming impossible in principle or inefficient. Based on these positions, the methodological foundation of technologies was studied, they were systemized, their potential in solving the current production problems was evaluated, and the prospects for their use in future were considered. Main sources of technology containment were shown. Attention was paid to the issues of standardization in the digital transformation. Possibilities and limitations of using the considered technologies in the education were studied in order to train the highly sought specialists familiar with technologies and possessing skills of their practical implementation. In this context, these technologies are conditionally divided into those that could be studied in higher educational aerospace institutions and those that reasonably could be studied within the framework of additional professional educational programs.
References
[1] Rudycheva N. Spros na tsifrovizatsiyu promyshlennosti v Rossii uvelichitsya v 14 raz [Demand for industry digitalization in Russia will increase by 14 times by 2030]. CNews Analytics. 2021, December 8. Available at: https://www.cnews.ru/reviews/it_v_promyshlennosti_2021/articles/spros_na_tsifroviztsiyu_promyshlennosti (accessed July 12, 2022).
[2] Meyer H., Kamtsiuris A., Zimdahl J., et al. Development of a digital twin for aviation research. Deutscher Luft- und Raumfahrtkongress, 2020, pp. 1–8. https://doi.org/10.25967/530329
[3] Dolmatov V.A., Devyatkov T.V. Opyt i perspektivy primeneniya tekhnologiy virtualnoy realnosti dlya vizualizatsii rezultatov imitatsionnogo modelirovaniya funktsionirovaniya proizvodstvennykh sistem sudostroitelnykh predpriyatiy [Experience and prospects of implementing virtual reality technologies in visualization of simulation modelling results of the shipbuilding enterprises production systems performance]. In: Trudy Desyatoy Vserossiyskoy nauchno-prakticheskoy konferentsii po imitatsionnomu modelirovaniyu i yego primeneniyu v nauke i promyshlennosti “Imitatsionnoe modelirovanie. Teoriya i praktika (IMMOD-2021) [Proceedings of the Tenth All-Russian scientific and practical conference on simulation modelling and its introduction in science and industry “Simulation modelling. Theory and practice” (IMMOD-2021)]. Saint Petersburg, 2021, pp. 179–182.
[4] Hänelad A., Schnellhardtd T., Wenklerbd E., et al. The development of a digital twin for machining processes for the application in aerospace industry. In: 53rd CIRP Conference on Manufacturing Systems. Procedia CIRP 93, 2020, pp. 1399–1405. https://doi.org/10.1016/j.procir.2020.04.017
[5] Rechkalov A.V., Artyukhov A.V., Kulikov G.G., Novikov V.N. Kontseptsiya sistemnogo predstavleniya predmetnoy oblasti pri formirovanii tsifrovogo dvoynika proizvodstvennogo protsessa mashinostroitelnogo predpriyatiya [Concept of the subject area systemic presentation in forming a digital twin of the machine building enterprise production process]. Vestnik UGATU – Herald of the USATU, 2022, vol. 26, no. 1 (95), pp. 120–135. https://doi.org/10.54708/19926502_2022_26195120
[6] Skvortsov T.P. Patent no. 2744098 Rossiyskaya Federatsiya. Avtomatizirovanny kompleks adaptivnogo upravleniya proizvodstvom tekhnicheski slozhnogo izdeliya posredstvom sistemnogo sinteza na osnove polunaturnogo modelirovaniya: no. 2020127624 [Patent no. 2744098, Russian Federation. Automated system for adaptive control in manufacturing a technically complex product by systemic analysis based on the semi-natural simulation: no. 2020127624]. Publ. March 2, 2021, bulletin no. 7, 17 p.
[7] Borovkov A.I., Ryabov Yu.A., Kukushkin K.V., Maruseva V.M., Kulemin V.Yu. Tsifrovye dvoyniki i tsifrovaya transformatsiya predpriyatiy OPK [Digital twins and digital transformation of the MIC enterprises]. Vestnik Vostochno-Sibirskoy otkrytoy akademii — Herald of the East-Siberian Open Academy, 2019, no. 32, 39 p. Available at: https://assets.fea.ru/uploads/fea/news/2019/04_april/15/elibrary_37180048_50837228.pdf (accessed September 9, 2020).
[8] PNST 429–2020. Umnoe proizvodstvo. Dvoyniki tsifrovye proizvodstva. Chast 2. Tipovaya arkhitektura [INST 429–2020. Smart production. Digital twins of production. Part 2. Typical architecture]. Moscow, Standartinform Publ., 2020, 8 p.
[9] Glaessgen E.H., Stargel D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In: The 53rd Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin, 2012, pp. 1–14. https://doi.org/10.2514/6.2012-1818
[10] Plemyashova A.U. Big Data. Kakikh rezultatov mozhno dostich s pomoschyu bolshikh dannykh [Big Data. What results could be obtained using Big Data]. Korporativnaya i finansovaya otchetnost. Mezhdunarodnye standarty — Corporate and financial reporting. International standards, 2019, no. 1, 9 p. Available at: https://www.datanomics.ru/wp-content/uploads/2019/02/BigData_statya_KFO.pdf (accessed July 4, 2022).
[11] Sistemy AI na proizvodstve: Aktualnye zadachi, resheniya, etapy realizatsii i keysy [AI systems in production: actual tasks, solutions, implementation stages and cases]. Moscow, Datanomics Publ., 2020. Available at: https://www.datanomics.ru/artciles/sistemy-ai-na-proizvodstve-aktualnye-zadachi-resheniya-etapy-realizatsii-i-kejsy (accessed July 4, 2022).
[12] Low-code platforma Loginom [Low-code Loginom platform]. Loginom.ru Available at: https://loginom.ru/platform (accessed July 20, 2022).
[13] Brunton S.L., Kutz J.N., Manohar K., Aravkin A.Y., Morgansen K., Klemisch J., Goebel N., Buttrick J., Poskin J., Blom-Schieber A., Hogan T., McDonald D. Data-driven aerospace engineering: reframing the industry with machine learning. arXiv preprint. https://doi.org/10.48550/arXiv.2008.10740 (accessed June 10, 2022).
[14] Digital twin framework for manufacturing. ISO 23247. Available at: https://www.ap238.org/iso23247/ (accessed July 12, 2022).
[15] Arkhangelsky V.E. Operatsionnaya model proizvodstva kak standartny komponent sredstv operativnogo planirovaniya pokaznogo proizvodstva [Operation manufacture model as a standard component of operation planning in the demonstrative production]. In: VI Mezhdunarodny forum “Informatsionnye tekhnologii na sluzhbe oboronno-promyshlennogo kompleksa Rossii (Izhevsk, 20–22 iyunya 2017 g.) [VI International Forum “Information technologies in serving the military-industrial complex of Russia” (Izhevsk, June 20–22, 2017)]. Izhevsk, 2017, 20 p. Available at: https://aamc.ru/wp-content/uploads/2018/06/ITOPK2017-ArkhangelskyVE-WithNotes_v102.pdf (accessed July 12, 2022).
[16] Blaž Rodič. Industry 4.0 and the new simulation modelling paradigm. Organizacija, 2017, vol. 50, pp. 193–207. https://doi.org/10.1515/orga-2017-0017
[17] Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM No. 2017618547 Rossiyskaya Federatsiya [Certificate on state registration of computer program no. 2017618547]. Informatsionno-poiskovaya sistema FIPS: No. 2017616541 [FISS information and search system: no. 2017616541]. Published August 3, 2017.
[18] Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM No. 2020617219 Rossiyskaya Federatsiya [Certificate on state registration of computer program no. 2020617219]. Informatsionno-poiskovaya sistema FIPS: No. 2020615857 [FISS information and search system: no. 2020615857]. Published July 2, 2020.
[19] Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM No. 2020664561 Rossiyskaya Federatsiya [Certificate on state registration of computer program no. 2020664561]. Informatsionno-poiskovaya sistema FIPS: No. 2020663239 [FISS information and search system: no. 2020663239]. Published November 13, 2020.
[20] [Kabanov A.A., Datsyuk I.V. Sistemy upravleniya proizvodstvom raketno-kosmicheskoy tekhniki: ERP, APS, MES ili SIM? [Control systems in rocket and space equipment production: ERP, APS, MES or SIM?]. In: Materialy XLVI Akademicheskikh chteniy po kosmonavtike [Materials of the XLVI readings on cosmonautics], 2022, vol. 4, pp. 128–132.
[21] Swope K. Smart Manufacturing in International Standards. In: Materials of Global product data interoperability summit 2019 (2019, November 19). Available at: https://gpdisonline.com/wp-content/uploads/2019/09/TheBoeingCompany-Swope-SmartManufacturingStrateg-CAMSC-Open.pdf (accessed June 16, 2022).
[22] Harper K.E., Ganz C., Malakuti S. Digital twin architecture and standards. IIC Journal of Innovation, 2019, pp. 1–12. Available at: https://www.iiconsortium.org/news-pdf/joi-articles/2019-November-JoI-Digital-Twin-Architecture-and-Standards.pdf (accessed June 14, 2022).
[23] Kolesnikov А. Digital twin interoperability. In: Digital Twins Day 2021 (Moscow, March 3, 2021). Available at: https://www.tadviser.ru/images/c/cf.pdf?ysclid=l5wsltfbk5456262976 (accessed March 27, 2022).
[24] Anylogistix Review. Anylogistix.ru Available at: https://www.anylogistix.ru/features (accessed July 20, 2022).
[25] Mnogopodkhodnoe imitatsionnoe modelirovanie [Multi-approach simulation modelling]. Anylogic.ru. Available at: https://www.anylogistix.ru/use-of-simulation/multimethod-modeling (accessed July 20, 2022).