Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

A thermal mathematical lumped-parameter model of AIST small spacecraft: verification by experimental telemetry data

Published: 25.04.2022

Authors: Kaurov I.V.

Published in issue: #4(124)/2022

DOI: 10.18698/2308-6033-2022-4-2171

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The purpose of the study was to model a small spacecraft of the AIST series and verify this thermal mathematical lumped-parameter model using differential equations and relying on telemetry data obtained during the experimental operation of the spacecraft. Thermal lumped-parameter models are widely spread in designing small-sized onboard equipment for small spacecraft. The model calculation was done by Simulink, the MATLAB-based graphical programming environment for modeling multidomain dynamical systems. We developed a system of equations, consisting of equations for each zone from the outer and inner sides, as well as the equations for scientific equipment. The small spacecraft design is based on three-layer honeycomb panels with heat pipes. Photocells are installed on the outer sides of the panels of the spacecraft, thus making a significant contribution to its thermal state.


References
[1] Alifanov O.M., Andreev A.N., Guschin V.N., et al. Ballisticheskie rakety i rakety-nositeli [Ballistic missiles and launch vehicles]. Moscow, Drofa Publ., 2004, 512 p.
[2] Kudriavtseva N.S. Osnovy proektirovaniia effektivnykh sistem termoregulirovaniya kosmicheskikh apparatov [Fundamentals of designing effective spacecraft thermal control systems]. Moscow, MAI Publ., 2012, 228 p.
[3] Jianyin Miao, Qi Zhong, Qiwei Zhao, Xin Zhao. Spacecraft Thermal Control Technologies. Springer Nature Singapore Pte Ltd, 2021, 360 p.
[4] Zemlyanskiy B.A., Anfimov N.A., Balyko Iu.P., Zalogin G.N., Zolotarev S.L., et al. Metodologicheskie osnovy nauchnykh issledovaniy pri obosnovanii napravlenii kosmicheskoy deyatelnosti, oblika perspektivnykh kosmicheskikh kompleksov i sistem ikh nauchno-tekhnicheskogo soprovozhdeniya [Methodological foundations of scientific research in substantiating the areas of space activity, the appearance of promising space complexes and systems for their scientific and technical support]. Metodologiya issledovaniiy aerotermodinamiki i teplovykh rezhimov v obespechenie razrabotki izdeliy raketno-kosmicheskoy tekhniki [Methodology for research of aerothermodynamics and thermal regimes to ensure the development of products of rocket and space technology]. Vol. 4. Moscow, Izd.-torg. korp. “Dashkov i K°” Publ., 2016, 384 p.
[5] Kirilin A.N., Anshakov G.P., Akhmetov R.N., Storozh A.D. Kosmicheskoe apparatostroenie. Nauchno-tekhnicheskie issledovaniнa i prakticheskie razrabotki AO «RKTs «Progress» [Space apparatus. Scientific and technical research and practical developments of JSC SRC Progress]. Samara, JSC SRC Progress Publ., 2017, 376 p.
[6] Diaz-Aguado M., Greenbaum J., Fowler W.T., Lightsey E.G. Small satellite thermal design, test, and analysis. Proceedings of SPIE. The International Society for Optical Engineering, 2006, vol. 622. DOI: 10.1117/12.666177
[7] Muñoz Toro S., Hornbuckle R.W., Lightsey E.G. FASTRAC Early Flight Results. Journal of Small Satellites, 2012, vol. 1, no, 2, pp. 49–61.
[8] Alekseev V.A., Kudryavtseva N.S., Malozemov V.V., Pichulin A.S., Titova A.S., Shangin I.A. Vestnik MAI — MAI Journal, 2010, vol. 17, no. 1, pp. 55–61.
[9] Alekseev V.A., Kudryavtseva N.S., Titova A.S. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2018, no. 2, pp. 72–88. DOI: 10.18698/0236-3941-2018-2-72-88
[10] Pichulin V.S., Alekseev V.A., Shishanov A.V., Zhilina I.E., Sorokin A.E., Belyavskiy A.E. Sistemy obespecheniya teplovogo rezhima radioelektronnykh ustroystv kosmicheskikh apparatov [Systems for ensuring the thermal regime of radio-electronic devices of space vehicles]. Moscow, MAI Publ., 2019, 112 p.
[11] Alekseev V.A., Koudryavtseva N.S., Nitova A.S. Vestnik MAI — MAI Journal, 2014, vol. 21, no. 1, pp. 154–162.
[12] Ivanushkin M.A., Tkachenko I.S., Safronov S.L., Kaurov I.V., Volgin S.S. On the results of processing of the telemetry data received from the “AIST” small satellite constellation. Journal of Physics: Conference Series, 2019, vol. 1368, no. 4, art. no. 042062.
[13] Kirilin A.N., Tkachenko S.I., Salmin V.V., Tkachenko I.S., Semkin N.D., Safronov S.L., Abrashkin V.I. Malye kosmicheskie apparaty serii «AIST» (proektirovanie, ispytaniya, ekspluatatsiya, razvitie) [Small spacecraft of the AIST series (design, testing, operation, development)]. Samara, SSC RAS Publ., 2017, 348 p.
[14] Hintermana E., Hoffman J.A. Simulating oxygen production on Mars for the Mars oxygen in-situ resource utilization experiment. Acta Astronautica, 2020, vol. 170, pp. 678–685.