Low-orbit spacecraft for highly detailed observation with a long lifetime in working orbits with an altitude below four hundred kilometers
Authors: Volotsuev V.V.
Published in issue: #12(120)/2021
DOI: 10.18698/2308-6033-2021-12-2135
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper analyzes mass-dimensional design parameters of the optical-electronic equipment for Earth’s remote sensing from heights in the range of 300...400 km. Within the research, we carried out the synthesis of a mirror-lens telescopic complex with an additional rotary mirror tilted to the optical axis of the main mirror and selected the design parameters from the conditions for ultra-high spatial resolution satellite images. Furthermore, we analyzed the mass-dimensional parameters of the spacecraft as a whole, the parameters allowing for the smaller effect of the Earth’s upper atmosphere on the evolution of the parameters of the working orbit. To maintain the radius of the low working orbit of the spacecraft for seven years, an electric propulsion system is proposed. To compensate for the aerodynamic drag force in the investigated range of heights and in any conditions of the upper atmosphere, a thrust force of no more than 18 milliNewtons is sufficient. The reserves of the mass of the working body for the operation of the electric propulsion system depend on the design-ballistic parameters of the spacecraft and the required lifetime in a given working orbit.
References
[1] Kosmicheskie snimki sverkhvysokogo razresheniya [Ultra-high resolution space imagery]. Available at: https://innoter.com/articles/kosmicheskie-snimki-sverkhvysokogo-razresheniya (accessed February 17, 2021).
[2] Baklanov A.I. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy — Rocket-Space Device Engineering and Information Systems, 2018, vol. 5, no. 3, pp. 17–28.
[3] Kurenkov V.I. Osnovy proektirovaniya kosmicheskikh apparatov optiko-elektronnogo nablyudeniya poverkhnosti Zemli. Raschet osnovnykh kharakteristik i formirovanie proektnogo oblika [Fundamentals of designing spacecraft for optical-electronic observation of the Earth’s surface. Calculation of the main characteristics and the formation of the design appearance]. Samara, Samara Universitu Publ., 2020, 461 p. ISBN 978-5-7883-1572-0.
[4] Betensky E., Khopkins R., Shenon Z. Proektirovanie opticheskikh system [Design of optical systems]. Moscow, Mir Publ., 1983, 430 p. (In Russ.).
[5] Volotsuev V.V., Salmin V.V. Kosmicheskie apparaty i tekhnologii — Spacecrafts & Technologies, 2020, vol. 4, no. 2 (32) pp. 61–71. DOI: 10.26732/j.st.2020.2.01
[6] Duboshin G.N. Spravochnoe rukovodstvo po nebesnoy mekhanike i astrodinamike [A reference guide to celestial mechanics and astrodynamics]. Moscow, Nauka, Glav. red. fiz.-mat. lit. Publ., 1976, 864 p.
[7] GOST R 25645.166–2004. Atmosfera Zemli verkhnyaya. Model plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov Zemli [State Standard R 25645.166–2004. Earth upper atmosphere. Density model for ballistic support of flights of artificial earth satellites]. Moscow, StandartGOST.ru Publ., 2004, 93 p.
[8] GOST 25645.101–83. Atmosfera Zemli verkhnyaya. Model plotnosti dlya proektnykh ballisticheskikh raschetov iskusstvennykh sputnikov Zemli [State Standard 25645.101–83. Earth upper atmosphere. Density model for project ballistic computations of artificial Earth satellites]. Moscow, StandartGOST.ru Publ., 1984.
[9] KH-7 «Gambit» [GAMBIT, KH-7]. Available at: https://ru.abcdef.wiki/wiki/KH-7_Gambit (accessed August 4, 2021).
[10] Volotsuev V.V., Salmin V.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2020, no. 10, pp. 65–74. DOI: 10.18698/0536-1044-2020-10-65-74
[11] Volotsuev V.V., Salmin V.V. Analysis of the efficiency of electric-jet engines for keeping a low orbit of a small spacecraft. AIP Conference Proceeding, 2021, 2318, art ID 110004.