Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Ballistic design of a launch vehicle with a reusable payload fairing

Published: 24.09.2021

Authors: Shulga A.A., Shcheglov G.A.

Published in issue: #9(117)/2021

DOI: 10.18698/2308-6033-2021-9-2109

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper focuses on the problem of the ballistic design of a two-stage launch vehicle for the case when the payload fairing is returned by using its flaps as the lifting surfaces of the first-stage reusable boosters. The fairing flaps must be opened after the velocity pressure reaches its maximum value. Therefore, the trajectory in the operation section of the first-stage boosters is assumed to be vertical. The flight along the curved part of the trajectory is carried out by the second-stage booster. In this study, we introduced an algorithm for selecting design parameters, developed an original program in the Wolfram Mathematica computer algebra system, and found the rational design parameters of the launch vehicle.


References
[1] TsENKI. Raiony padeniya [TsENKI. Missile stage impact areas]. Available at: https://www.russian.space/298/ (accessed April 12, 2021).
[2] Variant «Energiya-2» ili GK-175 [“Energy-2” or GK-175]. Available at: https://www.buran.ru/htm/41-3.htm (accessed April 12, 2021).
[3] Maksimovskiy V. Krylya Rodiny (Wings of the Motherland), 2002, no. 4, pp. 17−18.
[4] Nazarova D.K. Opredelenie aerodinamicheskikh kharakteristik otdelyaemykh ot rakety-nositelia elementov konstruktsii v vide obolochek i razrabotka sposobov ikh aerodinamicheskoy stabilizatsii. Diss. kand. tekhn. nauk [Assessment of the aerodynamic characteristics of shell-type structural elements separated from the launch vehicle and the development of methods for their aerodynamic stabilization. Cand. eng. sc. diss.]. Moscow, 2019, 176 p.
[5] Draft Environmental Assessment for SpaceX Falcon Launches at Kennedy Space Center and Cape Canaveral Air Force Station. Federal Aviation Administration, 2020, 121 p. Available at: https://www.faa.gov/space/environmental/nepa_docs/media/SpaceX_Falcon_Program_Draft_EA_508.pdf (accessed April 12, 2021).
[6] Bonetti D., Medici G., Arnao G.B., Salvi S., Fabrizi A., Kerr M. Reusable Payload Fairings: Mission Engineering and GNC Challenges. Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS). Available at: https://eucass.eu/9-news/79-eucass-2019-dois-of-full-papers-2 (accessed April 12, 2021).
[7] Wall M. Watch SpaceX catch an entire rocket nose cone that fell from space for the 1st time (video). July 21, 2020. Available at: https://www.space.com/spacex-falcon-9-rocket-payload-fairing-catch-success.html (accessed April 12, 2021).
[8] Belyaev A.V., Zelentsov Vl.V., Shcheglov G.A. Sredstva vyvedeniya kosmicheskikh letatelnykh apparatov [Spacecraft launch vehicles]. Moscow, BMSTU Publ., 2007, 56 p.
[9] Mishin V.P., ed. Osnovy proektirovaniya letatelnykh apparatov (transportnye sistemy) [Aircraft design fundamentals (transport systems)]. Moscow, Mashinostroenie Publ., 1985, 360 p.
[10] Serdyuk V.K. Proektirovanie sredstv vyvedeniya kosmicheskikh apparatov [Design of spacecraft launch vehicles]. Medvedev A.A., ed. Moscow, Mashinostroenie Publ., 2009, 504 p.
[11] Mishin V.P., Karrask V.K., ed. Osnovy konstruirovaniya raket-nositeley kosmicheskikh apparatov [Fundamentals of spacecraft launch vehicle design]. Moscow, Mashinostroenie Publ., 1991, 416 p.
[12] Branets V.N. Prikladnaya matematika i mekhanika — Journal of Applied Mathematics and Mechanics, 2020, vol. 84, no. 3, pp. 280–303.
[13] Baranov D.A., Elenev V.D. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2011, no. 2 (26), pp. 10−17.
[14] Korovin V.V. Innovatsionnaya nauka (Innovative science), 2017, no. 03-1, pp. 40−44.
[15] Guschin E.N., Von L.E. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal «Polet», — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2004, no. 1, pp. 37−42.
[16] Sikharulidze Yu.G. Ballistika i navedenie letatelnykh apparatov [Aircraft ballistics and guidance]. 3rd ed., Moscow, BINOM, Laboratoriya znaniy Publ., 2015, 410 p.
[17] Kalitkin N.N. Chislennye metody [Numerical methods]. Moscow, Nauka Publ., 1978, 512 p.
[18] Yaroshevskiy V.A. Uchenye zapiski TsAGI — TsAGI Science Journal, 2009, vol. 40, no. 3, pp. 53−59.
[19] Raketnye dvigateli AO KBKhA [Rocket engines of JSC KBKhA]. Available at: https://kbkha.ru/deyatel-nost/raketnye-dvigateli-ao-kbha/ (accessed April 12, 2021).
[20] Bregvadze D.T., Gabidulin O.V., Gurkin A.A., Zabolotko I.A. Politekhnicheskiy molodezhny zhurnal — Politechnical student journal, 2017, no. 12 (17), p. 1.
[21] Spaceflight 101. Space News and Beyond. Available at: https://spaceflight101.com/spacerockets (accessed April 12, 2021).
[22] The URM-1 rocket module for the Angara family. Available at: http://www.russianspaceweb.com/angara_urm1.html (accessed April 12, 2021).