Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Investigation of thermal oxidative degradation of carbon fiber-based material

Published: 05.07.2019

Authors: Prosuntsov P.V., Barinov D.Ya., Bogachev E.A.

Published in issue: #7(91)/2019

DOI: 10.18698/2308-6033-2019-7-1899

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

To develop and carry out calculations of heat transfer in heat-shielding materials, it is necessary to study the mechanisms of material destruction. For a composite material, it is important to study the behavior of both the material as a whole and each of its components. The work is devoted to the study of thermal oxidative degradation of highly porous material based on chopped carbon fibers, which is the preform for making advanced carbon-ceramic composite materials. The study was conducted in an oxidizing air environment using simultaneous thermal analysis with varying the initial mass of the samples and at different heating rates (5, 10, 20 K/min). The dependences of thermal effects in the material and mass loss during destruction for each sample were obtained. The influence of variable parameters on the temperature of the beginning of material destruction and the steady removal speed was established. It is shown that the destruction of the material occurs in the surface layer of a certain thickness. According to the results of thermogravimetric studies with different heating rates, a generalized kinetic model of destruction was developed and the kinetic characteristics of destruction were determined.

[1] Matthews F.L., Rawlings R.D. Composite Materials: Engineering and Science. Woodhead Publ., 1999, 470 p. [In Russ.: Matthews F.L., Rawlings R.D. Kompozitnye materialy. Mekhanika i tekhnologiya. Moscow, Tekhnosfera Publ., 2004, 408 p.].
[2] Nikitin P.V. Teplovaya zashchita [Thermal protection]. Moscow, MAI Publ., 2006, 512 p.
[3] Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow, Energia Publ., 1976, 392 p.
[4] Bessire B.K., Minton T.K. (2017). Decomposition of Phenolic Impregnated Carbon Ablator (PICA) as a Function of Temperature and Heating Rate. ACS Applied Materials & Interfaces. 9 (25) May 2017. DOI: 10.1021/acsami.7b03919
[5] Bessire B.K., Lahankar S., Minton T.K. (2014). Pyrolysis of Phenolic Impregnated Carbon Ablator (PICA). ACS Applied Materials & Interfaces. 7(3) December 2014. DOI: 10.1021/am507816f
[6] Johnson S.M. Thermal Protection Materials: Development, Characterization and Evaluation. NASA Ames Research Center. Munich, Germany September, 2012. Available at:
[7] Minakov V.T., Solntsev S.S. Keramomatrichnye kompozity [Ceramic matrix materials], 2006. Available at:
[8] Evdokimov S.A., Solntsev S.St., Ermakova G.V., Davletchin D.I. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2016, no. 3 (42), pp. 82–87. DOI: 10.18577/2071-9140-2016-0-3-82-87
[9] Yartsev D.V., Lakhin A.V., Volfkovich Yu.M., Manukhin A.V., Bogachev E.A., Timofeev A.N., Sosenkin V.E., Nikolskaya N.F. Izvestiya vysshikh uchebnykh zavedeniy. Poroshkovaya metallurgiia i funktsionalnye pokrytiya — Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings, 2009, no. 4, pp. 36–40.
[10] Timofeev A.N., Bogachev E.A., Gabov A.V., Abyzov A.M., Smirnov E.P., Persin M.I. Sposob polucheniya kompozitsionnogo materiala [The method of obtaining a composite material]. Patent RF no. 2130509, May 20, 1999, priority January 26, 1998.
[11] Bogachev E.A. Svoystva konstruktsionnogo okislitelno-stoykogo kompozitsionnogo materiala s karbidokremnievoy matritsey iz gazovoy fazy monometilsilana dlya izdelii aviakosmicheskoy tekhniki [Properties of structural oxidative-resistant composite material with a carbide silicon matrix from the gas phase of monomethylsilane for aerospace products]. Materialy konferentsii «Vysokotemperaturnye keramicheskie kompozitsionnye materialy i zashchitnye pokrytiya» [Materials of the conference “High-temperature ceramic composite materials and protective coatings”]. Moscow, VIAM Publ., December 11, 2014.
[12] Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskiy P.S. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2017, no. S, pp. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595
[13] Prosuntsov P.V., Barinov D.Ya. Teplovye protsessy v tekhnike (Thermal processes in technology), 2017, vol. 9, no. 7, pp. 311–318.
[14] Bogachev E.A., Elakov A.B., Beloglazov A.P., Denisov Yu.A., Timofeev A.N. Sposob izgotovleniya poristogo karkasa-osnovy kompozitsionnogo materiala [A method of manufacturing a porous framework of the composite material]. Patent RF no. 2620810, May 29, 2017.
[15] Bogachev E.A. Kompozity i nanostruktury — Composites and nanostructures, 2017, vol. 9, no. 1, pp. 12–23.
[16] GOST 29127–91 Plastmassy. Termogravimetricheskiy analiz polimerov. Metod skanirovaniya po temperature [State Standard 29127–91 Plastics. Thermogravity of polymers. Temperature scanning method]. Moscow, Izd. standartov Publ., 2004.
[17] Antiufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2015, no. 3 (36), pp. 79–83. DOI: 10.18577/2071-9140-2015-0-3-79-83
[18] Mukhametov R.R., Petrova A.P., Ponomarenko S.A., Akhmadieva K.R., Pavliuk B.F. Trudy VIAM — Proceedings of VIAM, 2018, no. 3 (63), pp. 28–36. DOI: 10.18577/2307-6046-2018-0-3-28-36
[19] Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2017, no. S, pp. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451