Development of the method of forming the shape of a reusable aerospace system, optimization of its design parameters and motion paths
Authors: Buzuluk V.I., Mikhalev S.M.
Published in issue: #6(90)/2019
DOI: 10.18698/2308-6033-2019-6-1894
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper investigates a concept of an aerospace system based on air launch from subsonic twin-fuselage aircraft and on the rocket launch into orbit. We propose a scheme of aerospace system trajectory providing return to the starting point both of the carrier and the first rocket stage with liquid-fuel motors. A method for multidisciplinary calculation and optimization of the design parameters of the aerospace system and approximately optimal control of the motion of the system steps with different power units in all flight segments, as well as a feasibility study, was developed On the basis of the developed techno-economic analysis methodology, a complex of computational programs in C ++ was compiled to determine the main design parameters and characteristics. The comparative analysis of three versions of carrier aircraft and three fuel options at the first rocket stage was carried out. The analysis showed that compared to kerosene variant the hydrogen hypersonic booster made it possible to significantly increase the payload mass while the launching costs stayed the same. We compared engineering-and-economic performance of the aerospace system with “Soyuz-2.1” expendable launch vehicle. The comparison showed that the unit cost of aerospace system injection can be reduced significantly compared to an expendable carrier due to system reusability
References
[1] Osnovy gosudarstvennoy politiki v oblasti ispol’zovaniya rezul’tatov kosmicheskoy deyatel’nosti v interesakh modernizatsii ekonomiki Rossiyskoy Federatsii i razvitiya yeye regionov na period do 2030 goda (utv. Prezidentom RF 14 yanvarya 2014 g. N Pr-51 [Fundamentals of state policy in the use of the results of space activities in the interests of modernizing the economy of the Russian Federation and the development of its regions for the period up to 2030 (approved by the President of the Russian Federation on January 14, 2014 N Pr-51]. Garant.ru. Available at: https://www.garant.ru/products/ipo/prime/doc/70484388/ (accessed May 25, 2019).
[2] Lozino-Lozinskiy G.Ye., Polet “Burana” [Flight of “Buran”]. Gagarinskie nauchnye chteniya po kosmonavtike i aviatsii 1989 [Gagarin scientific readings on astronautics and aviation 1989]. Moscow, Naauka Publ., 1990, pp. 6–21.
[3] Space Shuttle News Reference Manual. 1988, 924 p. Available at: http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/stsref-toc.html (accessed July 17, 2018).
[4] MAKS razdel: sostoyanie razrabotki, nauchno-tekhnichesky zadel. Entsiklopediya Buran [MAKS section: development status, scientific and technical. Encyclopedia Buran. Available at: http://buran.ru/htm/makszad.htm (accessed July 17, 2018).
[5] Kuzin A.I., Vakhnichenko V.V., Lozin S.N., Lekhov P.A., Semenov A.I., Gorbatenko V.V., et. al. Nauchno-tekhnichesky zhurnal “Aviakosmicheskaya tekhnika i tekhnologiya” (Aerospace technology), 2010, iss. 2, pp. 9–18.
[6] Plokhikh V.P., Buzuluk V.I., Udzhukhu A.Yu. Nauka i tekhnologii v promyshlennosti — Science and Technology in the Industry, 2012, no. 1 part 1, pp. 92–100.
[7] Mikhalev S.M. Trudy MAI, 2015, iss. 81. Available at: http://www.mai.ru/science/trudy/published.php?ID=57706 (accessed July 25, 2018).
[8] Buzuluk V.I., Mikhalev S.M. Opredeleniye ekonomicheskoy effektivnosti primeneniya razlichnykh vidov topliva dlya aerokosmicheskikh letatel’nykh apparatov [Cost Efficiency Estimation of Different Types of Fuel for Aerospace Vehicles]. In: Sbornik dokladov XXVII nauchno-tekhnicheskoy konferentsii po aerodinamike [Collection of reports. XXVII Aerodynamics Scientific and Technical Conference]. Volodarsky settlement, Moscow region, 2016, pp. 58–59.
[9] Buzuluk V.I., Mikhalev S.M. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 9. DOI: 10.18698/2308-6033-2017-9-1668
[10] Buzuluk V.I., Mikhalyov S.M. Nauchno-tekhnichesky zhurnal “Aviakosmicheskaya tekhnika i tekhnologiya” (Aerospace technology), 2018, iss. 1–2, pp. 3–12.
[11] Shkadov L., Denisov V., Lazarev V., Plokhikh V., Buzuluk V., Volodin S., Chervonenko K., Skipenko V. The comparative analysis of various aerospace system concepts. Acta Astronautica, 1995, vol. 35 (1), pp. 47–54.
[12] Novozhilov G.V., ed. Iz istorii sovetskoy aviatsii. Samolety OKB imeni S.V. Il’yushina [From the history of Soviet aviation. Aircraft Design Bureau named after S.V. Ilyushin]. Moscow, Mashinostroenie Publ., 1985, 264 p.
[13] Kozlov D. OAK budet razvivat perspektivnuyu aerodinamicheskuyu skhemu [UAC will develop a promising aerodynamic design]. Available at: https://www.aviaport.ru/news/2007/10/15/129977.html (accessed May 25, 2019).
[14] Mikhalyov S.M. Razrabotka metodiki formirovaniya oblika i optimizatsiya parametrov polnost’yu mnogorazovoy raketno-kosmicheskoy sistemy vyvedeniya na orbitu [Development of Configuration Method and Optimization of Parameters of a Completely Reusable Aerospace System of Orbital Injection]. Materialy V Mezhdunarodnogo mezhotraslevogo molodezhnogo nauchno-tekhnicheskogo foruma [Proceedings of the V International intersectoral youth scientific and technical forum “Youth and the future of aviation and space”], Russian exhibition center. Moscow, MAI Publ., 2013, pp. 251–252.
[15] Aviatsionnyye pravila. Glava 25. Normy letnoy godnosti samoletov transportnoy kategorii. Mezhgosudarstvennyy aviatsionnyy komitet, redaktsiya 3 s popravkami 1–6 [Aviation rules. Chapter 25. Airworthiness standards for aircraft of a transport category. Interstate Aviation Committee, Revision 3, Amended 1–6]. Moscow, JSK «Aviaizdat» Publ., 2009, 274 p.
[16] Levenberg K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. The Quarterly of Applied Mathematics, 1944, vol. 2, pp. 164–168.
[17] Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, vol. 11, no. 2, pp. 431–441.
[18] Gavin H.P. The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering Duke University, 2017, 19 p.
[19] Lourakis M.I.A. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Proc. Found. Res. Technol., 2005, pp. 1–6.
[20] Madsen K., Nielsen N.B., Tingleff O. Methods for nonlinear least squares problems. Technical Report. Informatics and Mathematical Modeling, Technical University of Denmark, 2004, 58 p.
[21] Renka R.J. Multivariate Interpolation of Large Sets of Scattered Data. ACM Transactions on Mathematical Software, 1988, vol. 14, no. 2, pp. 139–148.
[22] McCormick B.W. Aerodynamics Aeronautics and Flight Mechanics. New York, Wiley, 1994, 652 p.
[23] Udzhukhu A.Yu., Evstifeyev V.V., Lazarev V.V., Nikitchenko Yu.M., Ovchinnikov V.G., Rudyakov V.A., et al. Avtomatizirovannaya raschetnaya dialogovaya sistema (ARDIS) [Automated Calculation Interactive System]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM [Certificate of state registration of computer programs] no. 2010611209. Registrated 11.02.2010.
[24] Sheynin V.M., Kozlovskiy V.I. Vesovoye proyektirovaniye i effektivnost’ passazhirskikh samoletov [Weigh design and efficiency of passenger aircraft]. Moscow, Mashinostroenie Publ., 1984, 552 p.
[25] Torenbeek E. Synthesis of subsonic airplane design. Delft University Press, 1976 [In Russ.: Torenbeek E. Proektirovanie dozvukovykh samoletov. Moscow, Mashinostroenie Publ., 1983, 648 p.].
[26] Eger S.M., Mishin V.F., Liseytsev N.K., et al. Proyektirovaniye samoletov [The design of aircraft]. Moscow, Mashinostroenie Publ., 1983, 616 p.
[27] Rukovodstvo dlya konstruktorov po proyektirovaniyu samoletov. Metody rascheta massy silovoy ustanovki [A guide for aircraft designers. Methods for calculating the mass of the power plant]. Moscow, TsAGI Publ., 1981, vol. V, book 2, iss. 6, 60 p.
[28] Buzuluk V.I. Optimizatsiya trayektorii dvizheniya aerokosmicheskikh letatelnykh apparatov [Optimizing the movement trajectory of aerospace flying vehicles]. Moscow, TsAGI Publ., 2008, 476 p.
[29] Felbberg E. Classical Fifth-, Sixth-, Seventh-, and Eighth-order Runge-Kutta Formulas with stepsize control. NASA Technical Report, 1968, 82 p.
[30] Klochkov V.V. Upravleniye innovatsionnym razvitiyem grazhdanskogo aviastroyeniya [Managing the innovative development of civil aviation]. Moscow, GOU VPO MGUL Publ., 2009, 280 p.
[31] Alchian A. Reliability of Progress Curves in Airframe Production. Econometrica, 1963, vol. 31, no. 4, pp. 679–694.
[32] Wright T.P. Factors Affecting the Cost of Airplanes. Journal of Aeronautical Sciences. 1936, vol. 3, pp. 122–128.
[33] Smityuk YU. «Glavkosmos puskovyye uslugi» raskryla stoimost’ zapuska rakety «Soyuz 2.1» [“Glavkosmos launch services” revealed the cost of launching the Soyuz 2.1 rocket]. TASS Russian News Agency, 2 October 2018. Available at: http://tass.ru/kosmos/5628680 (accessed February 21, 2019).