Estimation of the allowable pressure of metal liner pressure testing when winding a composite shell
Authors: Egorov V.N., Egorov A.V.
Published in issue: #2(86)/2019
DOI: 10.18698/2308-6033-2019-2-1854
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
We investigated a liner local buckling as a result of delamination, which can occur at various stages of production, including the cases when the composite tape is wound with tension on the liner. To solve the problem of estimating the allowable pressure of the liner pressure test, a method of two calculations is proposed, the technique is focused on the use of temperature analogy. The method implements the closure of solutions to the contact pressure and stability of the liner through a common parameter which is the hoop stress in the liner in stressed state zone, this state is close to homogeneous. The contact pressure of the multilayer composite shell on the liner is determined by the value of the specified tension of the composite tape wound. The liner stability calculation was carried out in the LS-DYNA software package in a dynamic formulation when specifying the cooling of the outer shell. Delamination computing for the middle part of a cylindrical metal composite high-pressure vessel was performed. We show variants with the liner peeling from the composite shell and without delamination
References
[1] Vasilev V.V., Moroz N.G. Kompozitnye ballony davleniya. Proektirovanie, raschet, izgotovlenie i ispytaniya: spravochnoe posobie [Composite pressure cylinders. Designing, calculating, manufacturing and testing: a reference book]. Moscow, Mashinostroenie: Innovatsionnoe mashinostroenie Publ., 2015, 373 p.
[2] Vasiliev V.V. Composite pressure vessels — Analysis, design and manufacturing. Blacksburg, Bull Ridge Publ., 2009, 704 p.
[3] Trutnev N.S., Shishkin A.A., Filimonova T.V. Rational for selection design and material of metal-lite high pressure cylinders for the aircraft industry. Naukoemkie tekhnologii — Science Intensive Technologies, 2016, vol. 17, no. 6, pp. 63–67.
[4] Molochev V.P. Raschet metallokompozitnogo tsilindricheskogo ballona davleniya [Calculation of metal-base composite cylindrical high pressure vessel]. Voprosy Oboronnoy tekhniki. Ser. 15. Kompozitnye nemetallicheskie materialy v mashinostroenii — Problems of Defense Technology. Ser. 15. Composite Non-Metallic Materials in Mechanical Engineering, 2010, issue 4 (159), pp. 9–14.
[5] Аsyushkin V.А., Vikulenkov V.P., Lebedev К.N., Lukyanets S.V., Moroz N.G. Sozdaniye vysokoeffektivnogo metallokompozitnogo ballona vysokogo davleniya [Development of higheffective metal-base composite high-pressure vessel]. Vestnik NPO imeni S.A. Lavochkina (Herald of Lavochkin Association), 2015, no. 1 (27), pp. 19–27.
[6] Smerdov An.A., Seleznev V.A., Sokolov S.V., Smerdov Al.A., Logacheva A.I., Tinofeev A.N., Logacheva A.V. Razrabotka vysokoeffektivnykh kompozitnykh ballonov davleniya s granul’nym titanovym leynerom dlya izdeliy raketno-kosmicheskoy tekhniki [The development of high-performance composite cylinders with granular titanium liner for articles of rocket and spase technology]. Konstrukcii iz kompozicionnyh materialov — Composite materials constructions” (CM). 2015, no. 2 (138), pp. 15–22.
[7] Moisheev A.A., Asyushkin V.A., Tsvelev V.M., Vikulenko V.P., Smerdov An.A., Tsvetkov S.V., Kulish G.G. Development of a composite high pressure vessel for FREGAT-SBU versatile upper stage. In: Aktualnyye voprosy proyektirovaniya kosmicheskikh sistem i kompleksov: sb. nauch. tr. [Actual issues of designing space systems and complexes: Collect. scientific works]. Polischuk G.M., Pichkhadze K.M., eds. Moscow, Block-Inform-Express Publ., 2015, pp. 46–52.
[8] Sarbaev B.S. Raschet silovoy obolochki kompozitnogo ballona davleniya [Calculation of the structural shell of the composite pressure vessel]. Moscow, BMSTU Press, 2001, 96 p.
[9] Vorobey V.V., Evstratov S.V. Novyye napravleniya v sovremennoy tekhnologii namotki konstruktsiy iz kompozitsionnykh materialov [New trends in technology for winding of composite material construction]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 2009, vol. 16, no. 1, рр. 61– 72.
[10] Evstratov S.V. Razrabotka tekhnologicheskikh protsessov izgotovleniya sverkhlegkikh kombinirovannykh metallokompozitnykh ballonov davleniya: dis. ... kand. tekhn. nauk [Development of technological processes for the manufacture of ultra-light combined metal composite pressure vessels: Diss. ... Cand. Sc. in Engineering]. Moscow, MAI, 2015, 151 p.
[11] Marzbanrad J., Paykani A., Afkar A., Ghajar M. Finite element analysis of composite high-pressure hydrogen storage vessels. J. Mater. Environ. Sci., 2013, 4 (1), pp. 63–74.
[12] Zheng J.Y., Liu X.X., Xu P., Liu P.F., Zhao Y.Z., Yang J. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 2012, no. 37, 1048.
[13] Liu P.F., Chu J.K., Hou S.J., Xu P., Zheng J.Y. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Renewable and Sustainable Energy Reviews, 2012, no. 16, 1817.
[14] Nunes P.J., Velosa J.C., Antunes P.J., Silva J.F., Marques A.T. Studying the production of filament wound composite pressure vessels. 16th International Conference on Composite Materials (ICCM-16), Kyoto, Japan. 2007.
[15] Egorov A.V. Ustoychivost tsilindricheskikh obolochek v zhestkoy srede [Buckling of cylindrical shells in rigid medium]. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, issue 9. DOI: 10.18698/2308-6033-2017-9-1670
[16] Egorov A.V. Finite-element analysis of a column strut. Problemy mashinostroyeniya i avtomatizatsii — Engineering And Automation Problems, 2018, no. 4, pp. 114–118.