Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Crack toughness testing of spacecraft carrying planes

Published: 17.10.2018

Authors: Sidnyaev N.I., Belkina E.V.

Published in issue: #10(82)/2018

DOI: 10.18698/2308-6033-2018-10-1814

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The study shows the results of testing high-speed impact interaction between the particle flux of the cosmic space meteoric background and satellites and finds it crucial to use materials with increased tear resistance. In our research we substantiated strength parameters of the spacecraft outer cover, those which are able to withstand the conditions of the space environment. To determine the duration of spacecraft safe operation, we determined the probabilities of meteor particles entering it. Findings of the research helped describe the effects arising from the movement of microparticles in the material, and present models of interaction between a solid particle and spacecraft shielding. The study provides experimental and analytical dependencies, identifies the main factors that are responsible for destruction of the spacecraft carrying planes structure, and estimates the effect of these factors on the spacecraft surface wear. To assess the crack toughness of superhard material for spacecraft, we used linear fracture mechanics in a wide temperature range


References
[1] Sidnyaev N.I. Obtekanie giperzvukovykh letatelnykh apparatov v usloviyakh poverkhnostnogo razrusheniya [Hypersonic aircraft flow in conditions of surface destruction]. Moscow, Fizmatlit Publ., 2017, 304 p.
[2] Kalashnikov V.V., Ibatullin I.D., Ganigin S.Yu. et al. Izvestiya Samarskogo nauchnogo tsentra RAN — Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2012, vol. 14, no. 1, pp. 615–619.
[3] Solodov A.V. Inzhenernyy spravochnik po kosmicheskoy tekhnike [Engineering handbook of space technology]. Moscow, Voenizdat Publ., 1969, 696 p.
[4] Brown W.F., Jr., Srawley J.E. Plane Strain Crack Toughness Testing of High Strength Metallic Materials. ASTM STP, 1966, 410 p. [In Russ.: Brown W.F., Jr., Srawley J.E. Ispytaniya vysokoprochnykh metallicheskikh materialov na viazkost razrusheniya pri ploskoy deformatsii. Moscow, Mir Publ., 1972, 246 p.].
[5] Sidnyaev N.I., Makridenko L.A., Gecha V.Ya., Onufriev V.V. Problemy akkomodatsii nesushchikh poverkhnostey nizkoorbitalnykh kosmicheskikh sistem [Problems of accommodation of carrying planes of low-orbit space systems]. Tezisy dokladov Chetvertoy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Aktualnye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniia Zemli» [Abstracts of the Fourth International Scientific and Technical Conference “Actual problems of creating space systems for remote sensing of the Earth”]. Moscow, VNIEM Corporation JC Publ., 2016, pp. 59–62.
[6] Vasilev N.V., Boyarkina A.P., Nazarenko M.K. et al. Astronomicheskiy vestnik. Issledovaniia solnechnoy sistemy — Solar System Research, 1975, vol. IX, no. 3, pp. 178–183.
[7] Sidnyaev N.I., Makridenko L.A., Gecha V.Ya., Onufriev V.V. Aeromekhanika nizkoorbitalnykh kosmicheskikh apparatov [Aeromechanics of low-orbit spacecraft]. Tezisy dokladov Chetvertoy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Aktualnye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniia Zemli» [Abstracts of the Fourth International Scientific and Technical Conference “Actual problems of creating space systems for remote sensing of the Earth”]. Moscow, VNIEM Corporation JC Publ., 2016, pp. 62–65.
[8] Khekkel K. Tekhnicheskoe primenenie mekhaniki razrusheniya [Technical application of fracture mechanics]. Moscow, Metallurgiya Publ., 1974, 63 p. (In Russ.).
[9] Simonenko A.N., Levin B.Yu. Meteoritika (Meteoritics), 1972, no. 31, pp. 3–17.
[10] Uskov E.I., Babak A.V. Zavodskaya laboratoriya — Industrial laboratory, 1981, no. 1, pp. 79–82.
[11] Rouget G., Chaouki H., Picard D., Ziegler D., Alamdari H. Electrical Resistivity Measurement of Carbon Anodes Using the Van der Pauw Method. MDPI Metals, 2017, no. 7, 369 с.
[12] Todoroki A., Omagari K., Shimamura Y., Kobayashi H. Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Composites Science and Technology, 2006, vol. 66, рр. 1539–1545.
[13] Kane T.R., Likins P.W., Levinson D.A. Spacecraft Dynamics. McGraw-Hill, 2005, 436 p.
[14] Dunn B.D. Materials and Processes: for Spacecraft and High Reliability Applications. Springer, 2015, 667 p.
[15] Bragov A.M., Kadoni E., Krushka L. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo — Vestnik of Lobachevsky University of Nizhny Novgorod, 2011, no. 4 (5), pp. 2039–2040.
[16] Rusakov A.V., Tarasov Yu.L. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiziko-matematicheskie nauki — Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2000, no. 9, pp. 66–76.
[17] Dmitrieva T.L. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo — Vestnik of Lobachevsky University of Nizhny Novgorod, 2011, no. 4 (5), pp. 2039–2040.
[18] Patraev V.E., Trifanov I.V. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva (Scientific Journal of Science and Technology), 2010, no. 2 (28), pp. 110–113.
[19] Azarenkov V.I. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2015, vol. 14, no. 4, pp. 102–109.
[20] Antsupov V.P., Dvornikov L.T., Gromakovskiy D.G., Antsupov A.V. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova — Vestnik of Nosov Magnitogorsk State Technical University, 2014, no. 1 (45), pp. 141–146.
[21] Gerasimov A.V., Pashkov S.V. Vestnik Tomskogo gosudarstvennogo universiteta — Tomsk State University Journal, 2014, no. 3 (29), pp. 57–64.
[22] Yagova N.V., Romanova N.V., Barat A.A., Manukhin V.V., Gladyshev V.A. Vestnik MEI — MPEI Vestnik, 2009, no. 4, pp. 78–82.
[23] Semkin N.D., Balakin V.L., Belokonov I.V., Voronov K.E. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2007, no. 1 (12), pp. 53–63.
[24] Sidnyaev N.I. A Study of the Destruction of Spacecraft Surfaces at Contact Interactions with Microparticles of the Space Environment. Cosmic Research, 2018, vol. 56, no. 3, pp. 213–222.
[25] Mell R.J., Wertz G.E. Testing and Optimization of Electrically Conductive Spacecraft Coatings. NASA/CR. 2001. Available at: https://ntrs.nasa.gov/search.jsp?R=20020014287
[26] Vorobev A.A., Zykova T.S., Spitsyn D.D., Udintsev R.D., Yanevskiy V.D. Voprosy elektromekhaniki. Trudy VNIEM — Electromechanical matters. VNIIEM studies, 2011, vol. 120, no. 1, pp. 27–30.