Analysis of the landing practice of the “Venus-9–14”and “Vega-1, -2” spacecrafts on the Venusian soil
Authors: Buslaev S.P., Vorontsov V.A., Grafodatskiy O.S.
Published in issue: #8(80)/2018
DOI: 10.18698/2308-6033-2018-8-1790
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The article considers problems and prospects of landing future space vehicles on the ground of Venus in a new Venusian area, called «tessera» and having a complex terrain. The landing means the final stage of the spacecraft flight to the planet, i.e. the impact contact interaction of the spacecraft with the ground of the planet. The terrain in the areas of past landing of spacecrafts on Venus is compared with areas of possible landing sites in the future. A brief description of earlier tests of landing on grounds - analogues of Venusian ones is given and their application for perspective projects is analyzed. A mathematical model for studying the dynamics of the impact contact interaction of the landing gear with deformed Venusian soils is described. This model was used in the development of the «Venera-9–14» and «Vega-1, -2» landing vehicles. Based on the results of the analysis of their landing and the physical and mathematical simulation of the landing process, recommendations were developed for the implementation of the landing of the advanced Venera-D spacecraft in the regions of Venus with a complex terrain
References
[1] Vorontsov V.A., Buslaev S.P. Skhemnye resheniya posadki dolgozhivushchego modulya na poverkhnost Venery [Schematics for landing a long-lived module on the surface of Venus].Trudy XXXIII akademicheskikh chteniy po kosmonavtike “Aktualnye problemy rossiyskoy kosmonavtiki”. Moskva, 26–30 yanvarya 2009 [Proceedings of the XXXIII academic readings on cosmonautics “Actual problems of Russian cosmonautics”. Moscow, January 26–30, 2009]. Moscow, Komissiya RAN po razrabotke nauchnogo naslediya pionerov osvoeniya kosmicheskogo prostranstva [Commission of RAS on the research of scientific heritage of outer space exploration pioneers] Publ., 2009, pp. 470–477.
[2] Buslaev S.P., Vorontsov V.A. Proektirovanie skhem posadki kosmicheskikh apparatov kak prodolzhenie ckhem spuska i razrabotka soputstvuyushchego matematicheskogo obespecheniya [Designing space vehicle landing patterns as an extension of the descent schemes and the development of related mathematics]. Sistemnyy analiz, upravlenie i navigatsiya. Sbornik tezisov dokladov 14-y Mezhdunarodnoy nauchnoy konferentsii [System analysis, control and navigation. Collection of abstracts of the 14th International scientific conference]. Moscow, MAI-PRINT Publ., 2009, pp. 18–19.
[3] Venus Lander Mission Concepts. Short Course on Extreme Environments Technologies. Short Course Venus Lander Team. 6th International Planetary Probe Workshop, Atlanta, Georgia. June 22, 2008. Georgia Tech Conference Center Publ. Available at: https://smartech.gatech.edu/bitstream/handle/1853/26347/153-248-1-B.pdf?sequence=1 (accessed March 03, 2018).
[4] Venus Sample Return Mission. Virginia Polytechnic and State University. Design Team Publ. Available at: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4065/OldReports/venus.pdf (accessed March 01, 2018).
[5] Hall J.L. Venus Environmental Challenger. Venus Seismology Study: Short Course. Part II: Exploring Venus with Landers, Orbiters and Balloons. California Institute of Technology. Jet Propulsion Laboratory Publ., June 2, 2014. Available at: http://kiss.caltech.edu/workshops/venus/presentations/hall.pdf (accessed June 11, 2017).
[6] Hunter G.W. Long-lived Venus lander technologies. NASA Glenn Research Center Publ. Available at: https://www.lpi.usra.edu/vexag/oct2009/presentations/hunterVenusLanderTechnologies.pdf (accessed March 11, 2018).
[7] Wall M. Russia, US Mulling Joint Mission to Venus. January 17, 2017. Available at: https://www.space.com/35333-russia-nasa-venus-mission-venera-d.html (accessed May 14, 2017).
[8] Grossman L. Science News, vol. 193, no. 4, March 3, 2018, p. 14. Available at: https://www.sciencenews.org/article/what-will-it-take-go-venus (accessed April 10, 2018).
[9] Wilson C., Zetterling C.-M., Pike W.T. Venus Long-Life Surface Package (VL2SP). Cornell University Library. Available at: https://arxiv.org/ftp/arxiv/papers/1611/1611.03365.pdf (accessed April 10, 2018).
[10] NASA Studying Shared Venus Science Objectives with Russian Space Research Institute. NASA, JPL Publ., March 10, 2017. Available at: https://www.jpl.nasa.gov/news/news.php?feature=6774&utm_source=iContact&utm_medium=email&utm_campaign=NASAJPL&utm_content=daily20170310-1 (accessed June 11, 2017).
[11] Zetterling C.-M. Ultimate limits in high-temperature operation of semiconductors (not just SiC). KTH Royal Institute of Technology Publ., Stockholm, Sweden. Available at: http://www.ece.stonybrook.edu/~serge/ARW-8/ABSTRACTS/Zetterling-2.pdf (accessed March 19, 2018).
[12] Neudeck Ph.G., Meredith R.D., Chen L., Spry D.J., Nakley L.M., Hunter G.W. AIP Advances, 2016, no. 6 (12). DOI: 10.1063/1.4973429 Available at: https://aip.scitation.org/doi/10.1063/1.4973429 (accessed May 19, 2017).
[13] NASA demonstrates electronics for longer Venus surface missions. NASA Publ., February 10, 2017. Available at: https://phys.org/news/2017-02-nasa-electronics-longer-venus-surface.html (accessed April 19, 2018).
[14] Anthony S. We finally have a computer that can survive the surface of Venus. Arstechnica Publ., 02.08.2017. Available at: https://arstechnica.com/science/2017/02/venus-computer-chip/ (accessed April 19, 2018).
[15] Buslaev S.P., Vernigora L.V., Vorontsov V.A., Pichkhadze K.M. Posadka na poverkhnost planety Venera. Osobennosti predlagaemykh mest posadki [Landing on the surface of the planet Venus. Features of the proposed landing sites]. Sistemnyy analiz, upravlenie i navigatsiya. K 25-letiu osushchestvleniya proekta “Vega”. Sbornik tezisov dokladov 15-y Mezhdunarodnoy nauchnoy konferentsii [System analysis, control and navigation. Commemorating the 25th anniversary of the Vega project. Collection of abstracts of 15th International scientific conference].Moscow, MAI-PRINT Publ., 2010, pp. 16–17.
[16] Abdrakhimov A.M. Geologic mapping of “Venera” and “Vega” landing site areas on Venus. Materialy mezhdunarodnoy konferentsii ‘GIS dlya ustoychivogo razvitiya territoriy “INTERCARTO-8”’. Helsinki — St. Petersburg, 2002 [Proceedings of the International Conference ‘GIS for Sustainable Development of Territories “INTERCARTO-8”’. Helsinki — St. Petersburg, 2002]. St. Petersburg, 2002, pp. 426–429. Available at: http://planetmaps.ru/files/2002_11.pdf (accessed May 19, 2017).
[17] Basilevsky А.Т., Ivanov M.A., Head J.W., Aittola M., Raitala J. Planetary and Space Science, 2007, vol. 55, pp. 2097–2112.
[18] Bazilevsky A.T., Burba G.A., Bobina N.N., Shaikina V.P., Ivanov M.A., Kruchkov V.P., Pronin A.A., Shalimov I.V., Head J. W. Issledovanie geologicheskogo stroeniya i istorii planety Venera putem sostavleniya globalnoy geologicheskoy karty [Investigation of the geological structure and history of the planet Venus by compiling a global geological map]. Materialy mezhdunarodnoy konferentsii ‘GIS dlya ustoychivogo razvitiya territoriy “INTERCARTO-8”’. Helsinki — St. Petersburg, 2002 [Proceedings of the International Conference ‘GIS for Sustainable Development of Territories “INTERCARTO-8”’. Helsinki — St. Petersburg, 2002]. St. Petersburg, 2002, pp. 419–424. Available at: http://planetmaps.ru/files/2002_9.pdf (accessed May 19, 2017).
[19] Buslaev S.P. Razlichnye modeli okruzhaushchey sredy na Venere i problemy posadki budushchikh venerianskikh KA na grunt [Various environmental models of Venus and the problems of landing future Venus space vehicles on the ground]. Sistemnyy analiz, upravlenie i navigatsiya. Sbornik tezisov dokladov 20-y Mezhdunarodnoy nauchnoy konferentsii [System analysis, control and navigation. Collection of abstracts of 20th International scientific conference]. Moscow, MAI-PRINT Publ., 2015, pp. 124–127.
[20] Florensky K.I., Basilevsky А.Т., Pronin A.A., Burba S.A. Rezultaty geologo-morfologicheskogo analiza panoram Venery. Pervye panoramy poverkhnosti Venery [Results of the geological and morphological analysis of the Venus panoramas. The first panoramas of the Venus surface]. Moscow, Nauka Publ., 1979, pp. 107–127.
[21] Basilevsky А.Т., Grigoryev E.I., Ermakov S.N., Karyagin V.P., Pichkhadze K.M., Cheremnykh S.V. Proektirovanie spuskaemykh avtomaticheskikh kosmicheskikh apparatov: opyt razrabotki dialogovykh protsedur [Design of descent automatic spacecrafts: Experience in developing interactive procedures]. Moscow, Mashinostroenie Publ., 1985, 264 p.
[22] Buslaev S.P., Stulov V.A., Grigoryev E.I. Kosmicheskie Issledovaniya — Cosmic Research, 1983, vol. 21, no. 4, pp. 540–544.
[23] Buslaev S.P. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal “Polyot” — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2011, no. 1, pp. 35–40.
[24] Venus Flagship Mission Study: Report of the Venus Science and Technology Definition Team. Task Order NMO710851. NASA Publ., April, 17, 2009, 292 p. Available at: http://www.lpi.usra.edu/vexag/reports/venusFlagshipMissionStudy090501.pdf (accessed May 19, 2017).
[25] Venus Intrepid Tessera Lander: Mission Concept Study Report to the NRC Decadal Survey Inner Planets. NASA-GSFC, NASA-ARC Publ., March, 19, 2010. Available at: http://www.lpi.usra.edu/vexag/reports/VenusIntrepidTesseraLander.pdf (accessed May 19, 2017).
[26] Glaze L., Baker C., Adams M. et al. Venus Mobile Explorer: A Mission Concept for the National Research Council Planetary Decadal Survey. 7th Int. Planetary Probe Workshop 12–18, 2010, Barcelona, 27 p. Available at: http://www.planetaryprobe.eu/IPPW7/proceedings/IPPW7%20Proceedings/Presentations/Session2/pr385.pdf (accessed May 19, 2017).
[27] Buslaev S.P. Vestnik NPO im. S.A. Lavochkina (Lavochkin Association Bulletin), 2011, no. 1, pp. 32–37.
[28] Buslaev S.P. Kosmicheskie Issledovaniya — Cosmic Research, 1988, vol. 26, no. 1, pp. 41–48.