Methods of solving inverse problems of mathematical physics to determine effective physical properties of carbon ablators for thermal protection
Authors: Gorskiy V.V., Gordeev A.N., Dmitrieva A.A., Kovalsky M.G.
Published in issue: #8(80)/2018
DOI: 10.18698/2308-6033-2018-8-1789
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper introduces the methods to determine characteristics of carbon degradation caused by its heterogeneous oxidation, which is necessary for predicting the ablation of rocket and space heat-protective equipment coatings parts in oxygen-containing medium under high temperature effect. The paper presents the basic scheme of ablation experiments for a dense carbon material and describes a carbon ablation calculation-theoretical model during the heterogeneous material oxidation process at moderate ablation rates. The paper considers the methods for solving the inverse problem of mathematical physics to identify effective physical properties of carbon material, i.e. its kinetic constants, which are included in the adopted ablation model. The study gives an example of solving an optimization problem to determine the kinetic constants of carbon heterogeneous oxidation
References
[1] Reznik S.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, iss. 3. Available at: http://engjournal.ru/articles/638/638.pdf (accessed January 15, 2018).
[2] Savvatimsky A. Springer. Series in Materials Science, 2015, vol. 134, pp. 183–211.
[3] Vignoles G.L., Lachaud J., Aspa Y., Goyhénèche J.-M. Ablation of carbon-based materials: Multiscale roughness modelling. Composites Science and Technology, 2009, vol. 69, issue 9, pp. 1470–1477.
[4] Gorsky V.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 8. Available at: http://engjournal.ru/articles/1645/1645.pdf (accessed January 15, 2018).
[5] Candler G.V., Alba Ch.R., Greendyke R.B. Characterization of Carbon Ablation Models Including Effects of Gas-Phase Chemical Kinetics. The American Insti-tute of Aeronautics and Astronautics (AIAA). Available at: https://arc.aiaa.org/doi/full/10.2514/1.T4752 DOI: 10.2514/1.T4752 (accessed January 15, 2018).
[6] Turchi A., Congedo P.M., Magin Th.E. International Journal of Thermal Sciences, 2017, vol. 118, pp. 497–509. Available at: http://www.sciencedirect.com/science/article DOI: 10.1016/j.ijthermalsci.2017.04.004 (accessed January 15, 2018).
[7] Polezhaev Yu.V., Yurevich F.B. Teplovaya zaschita [Heat protection]. Moscow, Energia Publ., 1976, 391 p.
[8] Gorsky V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zaschity [Theoretical basis of calculating ablative thermal protection]. Nauchny mir Publ., Moscow, 2015, 688 p.
[9] Gorsky V.V., Kovalsky M.G., Olenicheva A.A. Inzhenerno-fizichesky zhurnal — Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 1, pp. 133–137.
[10] Gorsky V.V., Zolotarev S.L., Olenicheva A.A. Inzhenerno-fizichesky zhurnal — Journal of Engineering Physics and Thermophysics, 2015, vol. 88, no. 1, pp. 161–164.
[11] Glushko V.P, Gurvich L.V., Bergman G.A. et al. Termodinamicheskie svoystva individualynykh veschestv. V 4 tomakh. Tom 2. Kn. 2 [Thermodynamic properties of individual substances. Reference edition. In 4vols. Vol. 2. Book 2]. Moscow, Nauka Publ., 1979, 341 p.
[12] Gordeev A.N., Kolesnikov A.F. Vysokochastotnye induktsionnye plazmotrony serii VGU [High-frequency induction plasma torches of VSU series]. Aktualnye problemy mekhaniki: Fiziko-himicheskaya mekhanika zhidkostey i gazov [Actual problems of mechanics: Physical and chemical mechanics of liquids and gases]. Moscow, Nauka Publ., 2010, pp. 151–177.
[13] Gordeev A.N., Kolesnikov A.F., Yakushin M.I. Izvestya AN SSSR. Mekhanika zhidkosti i gaza — Fluid Dynamics. A Journal of Russian Academy of Sciences, 1983, no. 6, pp. 129–136.
[14] Kolesnikov A.F., Pershin I.S., Vasil’evskii S.A., Yakushin M.I. Study of Quartz Surface Catalycity in Dissociated Carbon Dioxide Subsonic Flows. Journal of Spacecraft and Rockets, 2000, vol. 37, no. 5, pp. 573–579.
[15] Doroshenko V.M., Mysova V.M., Rulev Yu.K., Yakushin M.I. Inzhenerno-fizichesky zhurnal — Journal of Engineering Physics and Thermophysics, 1987, vol. 53, no. 3, pp. 492–493.
[16] Kolesnikov A.F., Gordeev A.N., Vasil’evskii S.A., Sakharov V.I. Codes-to-experiment comparison for subsonic inductive air plasma flows in the IPG-4 plasmatron. Proc. 7th Int. Workshop on Magneto-Plasma Aerodynamics (April 17–19, Moscow, 2007). Moscow, IITP RAS, 2007, pp. 84–91.