Analysis of influence of metal linings profile heterogeneity on the high-speed elongated elements shape
Authors: Kruglov P.V., Kolpakov V.I.
Published in issue: #7(79)/2018
DOI: 10.18698/2308-6033-2018-7-1782
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The article considers the problem of determining physico-mechanical and geometric parameters of modern metal lining for cumulative charges. The study establishes parameters of the linings, which form high-speed elongated elements that provide greater action efficiency. As the parameters influencing the high-speed element shape, we choose the geometric characteristics of the inner and outer spherical surfaces of the lining with different thickness along the generatrix, and the lining material strength. The required high-speed elements shape parameters are elongation, fullness, and stabilizer skirt diameter in the element tail part. Based on calculation results, the paper establishes a ratio between the steel lining parameters and high-speed elongated elements ones, as well as offers the recommendations on the lining shape choice
References
[1] Kolpakov V.I. Nauka i obrazovanie — Science and Education, 2012, no. 2. Available at: http://technomag.edu.ru/doc/334177.html (accessed December 10, 2016).
[2] Selivanov V.V., ed. Boepripasy. V 2 tomakh. Tom 1 [Ammunition. In 2 vols. Vol. 1]. Moscow, BMSTU Publ., 2016, 506 p.
[3] Kruglov P.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 12. Available at: http://dx.doi.org/10.18698/2308-6033-2017-12-1714
[4] Kolpakov V.I., Baskakov V.D., Shikunov N.V. Oboronnaya tekhnika — Deference technology, 2010, no. 1–2. pp. 82–89.
[5] Potapov I.V., Kolpakov V.I., Shikunov N.V., Yakimovich G.A. Matematicheskoe modelirovanie vzrivnogo formirovaniya stalnykh porazhayuschykh elementov [Mathematical modeling of explosive formation of steel projectiles]. Shock Waves in Condensed Matter: Int. Conference. St. Petersburg, Novgorod (Russia), 2010, pp. 184–188.
[6] Kolpakov V.I. Osobennosti deformirovaniya i razrusheniya udlinennykh porazhayuschykh elementov pri vzrivnom nagruzhenii kumulyativnykh oblitsovok [Features of deformation and destruction of elongated projectiles during explosive loading of shaped lining]. Trudy mezhdunar. konf “XIII Kharitonovskie tematicheskie nauchnye chteniya. Ekstremalnye sostoyaniya veschestva. Detonatsiya. Udarnye volny” (Sarov, 14–18 marta 2011 g.) [Proc. of the Int. Conf. “XIII Kharitonov thematic scientific readings. Extreme states of matter. Detonation. Shock Waves” (Sarov, March 14–18, 2011)]. Sarov, RFNC-VNIIEF Publ., 2012, pp. 532–536.
[7] Kolpakov V.I. Analiz konstruktivnykh osobennostey zaryadov s nizkimi segmentnymi kumulyativnymi oblitsovkami iz tantalovykh splavov [Analysis of design features of charges with low segment shaped linings made of tantalum alloys]. Trudy mezhdunar. konf. “ХVIII Kharitonovskie tematicheskie nauchnye chteniya. Ekstremalnye sostoyaniya veschestva. Detonatsiya. Udarnye volny” [Proc. of the Int. Conf. “XVII Kharitonov thematic scientific readings. Extreme states of matter. Detonation. Shock Waves” (Sarov, March 23–27, 2015)]. Sarov, RFNC-VNIIEF Publ., 2012, pp. 288–290.
[8] Kolpakov V.I., Goryunov V.V. Oboronnaya tekhnika — Deference technology, 2011, no. 2–3, pp. 30–34.
[9] Orlenko L.P., ed., Fizika vzryva. V 2 tomakh. Tom 2 [Physics of explosion. In 2 vols. Vol. 2]. Moscow, Fizmatlit Publ., 2002, 656 p.
[10] Bender D., Chhouk B., Fong R., Ng W., Rice B., Volkmann E. Explosively formed penetrators (EFP) with canted fins. 19th Int. Symp. of Ballistics, 2001, pp. 755–762.
[11] Held M. The shaped charge potential. 20th Int. Symp. of Ballistics, 2002, pp. 81–90.
[12] Liu J., Gu W., Lu M., Xu H., Wu S. Formation of explosively formed penetrator with fins and its flight characteristics. Defense Technology, 2014, no. 10, pp. 119–123. DOI: 10.1016/j.dt. 2014.05.002 (accessed February16, 2018).
[13] Hussain G., Hameed A., Hetherington J.G., Malik A.Q., Sanaullah K. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2013, vol. 54, no. 1, pp. 13–24.
[14] Pappu M., Murr L.E. Hydrocode and microstructural analysis of explosively formed penetrators. J. of material science, 2002, no. 37, pp. 233–248.
[15] Li W., Wang S., Chen K. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 5, pp. 151–157.
[16] Hussain G., Hameed A., Hetherington J.G., Barton P.C., Malik A.Q. Hydrocode Simulation with Modified Johnson-Cook Model and Experimental Analysis of Explosively Formed Projectiles. Journal of Energetic Materials, 2013, 31, vol. 2, pp. 143–155. DOI: 10.1080/07370652.2011.606453 (accessed February16, 2018).
[17] Mikhalev A.N., Podlaskin A.B. Izvestiya RAN — Bulletin of the Russian Academy of Sciences, 2009, no. 1(59), pp. 3–9.
[18] Mikhalev A.N. FTI im. A.F. Ioffe. Preprint (Preprint of the Ioffe Institute), 2004, no. 1775, 38 p.
[19] Mikhalev A.N., Podlaskin A.B. Issledovaniya obtekaniya i aerodinamiki udarnykh yader na ballisticheskoy ustanovke [Studies of the flow and aerodynamics of explosively formed penetrators on a ballistic installation]. Fundamentalnye osnovy ballisticheskogo proektirovaniya: Sb. tr. Vseros. nauch.-tekhn. konf. [Fundamentals of ballistic design: coll. pap. of all-Russ. sc. and tech. conf.]. St. Petersburg, 2011, vol. 1, pp. 100–108.
[20] Andreev S.G., Boyko M.M., Klimenko V.Yu. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2013, no. 2, pp. 108–126.
[21] Sokolov S.S., Sadovoy A.A., Chayka T.I. VANT, ser. Matematicheskoe modelirovanie fizicheskikh protsessov — Voprosy Atomnoy Nauki i Tekhniki (VANT), series Mathematical Modeling of Physical Processes, 2004, no. 3, pp. 54–61.
[22] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 9. Available at: http://dx.doi.org/10.18698/2308-6033-2017-9-1674