Superjet express diagnostics of the surface layer anisotropy of materials and products of rocket and space equipment
Authors: Barzov A.A., Galinovskij A.L., Golubev E.S., Sysoev N.N., Fedyanin A.A., Filimonov A.S.
Published in issue: #6(78)/2018
DOI: 10.18698/2308-6033-2018-6-1773
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The problem of express diagnostics of the parameter spread which determine the quality of the surface layer of parts obtained by selective laser fusion is one of the factors limiting the large-scale application of this technology in current machine-building production of critical products. The article shows the possibility of solving this problem by applying the technology of superjet hydrophysical diagnostics. This technology is based on the analysis of the results obtained by erosive local material surface destruction of the part or sample by super-fast hydrojet. The examples illustrating the high information and technological potential of the superjet hydrophysical diagnostics technology are presented. It is shown that using superjet diagnostics largely ensures obtaining the information necessary for improving the quality of realization of all stages of the product life cycle where applying additive technologies in production is promising. On the example of the unit-forming element of the reflector framework of the space telescope «Millimetron» it is shown that the approaches proposed can be used in the process of technological preparation of rocket and space equipment production
References
[1] Aleshin N.P., Murashov V.V., Evgenov A.G., Grigoriev M.V., Shchipakov N.A., Vasilenko S.A., Krasnov I.S. Defektoskopiya — Russian Journal of Nondestructive Testing, 2016, no. 1, pp. 48–55.
[2] Babentsova L.P., Antsiferova I.V. Master
[3] Kosushkin P.A. Vektor vysokikh tekhnologiy — Vector of High Technologies, 2017, no. 2 (31), pp. 28–31.
[4] Ryzhkov E.V., Pavlov M.D., Gusarov A.V., Artemenko Yu.A., Vasiltsov V.V. Fizika i khimiya obrabotki materialov — Physics and chemistry of material processing, 2011, no. 1, pp. 77–83.
[5] Khvastunov R.M., Yagello O.I., Korneeva V.M., Polikarpo M.P. Ekspertnye otsenki v kvalimetrii mashinostroeniya [Expert assessments in mechanical engineering qualimetry]. Moscow, Tekhnoneftegaz Publ., 2012, 395 p.
[6] Galinovsky A.L., Samsonov K.S., Sevryukova A.V., Salakhatdinova A.R. Innovatika i ekspertiza: nauchnye trudy — Innovatics and Expert Examination, 2017, no. 1 (19), pp. 64–74.
[7] Abashin M.I. Uskorennoe opredelenie parametrov kachestva poverkhnostnogo sloya materiala izdeliy po rezultatam vozdeystviya na nego sverkhzvukovoy strui zhidkosti. Diss. cand. tekhn. nauk. Avtoreferat [Accelerated determining parameters of quality of a product material surface layer by the results of affecting it by a supersonic jet of a liquid. Cand. Eng. sc. diss. Abstract]. Moscow, BMSTU Publ., 2013, 17 p.
[8] Abashin M.I., Bochkarev S.V., Tsaplin A.I., Kobernik N.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions. Маchine Building, 2015, no. 12 (669), pp. 52–61.
[9] Bochkarev S.V., Tsaplin A.I., Galinovsky A.L., Abashin M.I., Barzov A.A. Metallovedenie i termoobrabotka metallov — Physical Metallurgy and Metal Heat Treatment, 2017, no. 6 (744), pp. 58–63.
[10] Kok Y., et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing. A critical review. Materials and Design, 2018, no. 139, pp. 565–586.
[11] Popovich A.A., Sufiiarov V.S., Borisov E.V., Polozov I.A., Masaylo D.V., Grigoriev A.V. Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials. Russian Journal of Non-Ferrous Metals, 2017, vol. 58, no. 4, pp. 389–395.
[12] Sklyar M.O., Turichin G.A., Klimova O.G., Zotov O.G., Topalov I.K. Microstructure of 316L stainless steel components produced by direct laser deposition. Steel in Translation, 2016, vol. 46, iss. 12, pp. 883–887.
[13] Wang Z., Palmer T.A., Beese A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing, Acta Mater, 2016, no. 110, pp. 226–235.
[14] Hussam E. C., Bruno C., Branchu S., Xiaowei H., Hasco J. Y., Guille R. Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures. Optics and Lasers in Engineering, 2012, vol. 50, pp. 1779–1784.
[15] Bazaleeva K.O., Tsvetkova E.V., Balakirev E.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye — Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering, 2016, no. 5, pp. 117–127.
[16] Shvartsev S.L. Do additive technologies have a future? Herald of the Russian Academy of Sciences, 2017, vol. 87, no. 3, pp. 267–275.
[17] Leonenkov A.D., Dvirny V.V. Perspectivy primeneniya adaptivnykh tekhnologiy v aerokosmicheskoy otrasli [Prospects of applying additive Technologies in the aerospace Industry]. Sbornik trudov Mezhdunarodnoy nauchnoy konferentsii “Reshetnevskie chteniya 2017”. Chast 2 [Proceedings of the International scientific conference “Reshetnev
[18] Kovalev D.S., Kovalenko P.A. Aktualnye problemy aviatsii i kosmonavtiki —Actual problems of aviation and cosmonautic, 2017, vol. 1, no. 13, pp. 398–400.
[19] Sovetnikov E.I. Tekhnologiya legkikh splavov — Technology of Light Alloys, 2015, no. 3, pp. 17–31.